Average optimal strategies for zerosum Markov games with poorly known payoff
function on one side
Pages: 105  119,
Issue 1,
January
2014
doi:10.3934/jdg.2014.1.105 Abstract
References
Full text (452.9K)
Related Articles
Fernando LuqueVásquez  Departamento de Matemáticas, Universidad de Sonora, Rosales s/n, Centro, C.P. 83000, Hermosillo, Sonora, Mexico (email)
J. Adolfo MinjárezSosa  Departamento de Matemáticas, Universidad de Sonora, Rosales s/n, Centro, C.P. 83000, Hermosillo, Sonora,, Mexico (email)
1 
H. S. Chang, Perfect information twoperson zerosum Markov games with imprecise transition probabilities, Math. Meth. Oper. Res., 64 (2006), 335351. 

2 
J. I. GonzálezTrejo, O. HernándezLerma and L. F. HoyosReyes, Minimax control of discretetime stochastic systems, SIAM J. Control Optim., 41 (2003), 16261659. 

3 
E. I. Gordienko and J. A. MinjárezSosa, Adaptive control for discretetime Markov processes with unbounded costs: Discounted criterion, Kybernetika (Prague), 34 (1998), 217234. 

4 
M. K. Ghosh, D. McDonald and S. Sinha, Zerosum stochastic games with partial information, J. Optimiz. Theory Appl., 121 (2004), 99118. 

5 
O. HernándezLerma and J. B. Lasserre, "DiscreteTime Markov Control Processes. Basic Optimality Criteria," Applications of Mathematics (New York), 30, SpringerVerlag, New York, 1996. 

6 
O. HernándezLerma and J. B. Lasserre, "Further Topics on DiscreteTime Markov Control Processes," Applications of Mathematics (New York), 42, SpringerVerlag, New York, 1999. 

7 
O. HernándezLerma and J. B. Lasserre, Zerosum stochastic games in Borel spaces: Average payoff criteria, SIAM J. Control Optim., 39 (2001), 15201539. 

8 
A. Jaśkiewicz and A. Nowak, Zerosum ergodic stochastic games with Feller transition probabilities, SIAM J. Control Optim., 45 (2006), 773789. 

9 
A. Krausz and U. Rieder, Markov games with incomplete information, Math. Meth. Oper. Res., 46 (1997), 263279. 

10 
H.U. Küenle, On Markov games with average reward criterion and weakly continuous transition probabilities, SIAM J. Control Optim., 45 (2007), 21562168. 

11 
E. L. Lehmann and G. Casella, "Theory of Point Estimation," Second edition, SpringerVerlag, New York, 1998. 

12 
F. LuqueVásquez, Zerosum semiMarkov games in Borel spaces: Discounted and average payoff, Bol. Soc. Mat. Mexicana (3), 8 (2002), 227241. 

13 
J. A. MinjárezSosa and F. LuqueVásquez, Two person zerosum semiMarkov games with unknown holding times distribution in one side: A discounted payoff criterion, Appl. Math. Optim., 57 (2008), 289305. 

14 
J. A. MinjárezSosa and O. VegaAmaya, Asymptotically optimal strategies for adaptive zerosum discounted Markov games, SIAM J. Control Optim., 48 (2009), 14051421. 

15 
K. Najim, A. S. Poznyak and E. Gómez, Adaptive policy for two finite Markov chains zerosum stochastic game with unknown transition matrices and average payoffs, Automatica J. IFAC, 37 (2001), 10071018. 

16 
N. Shimkin and A. Shwartz, Asymptotically efficient adaptive strategies in repeated games. I. Certainty equivalence strategies, Math. Oper. Res., 20 (1995), 743767. 

17 
N. Shimkin and A. Shwartz, Asymptotically efficient adaptive strategies in repeated games. II. Asymptotic optimality, Math. Oper. Res., 21 (1996), 487512. 

18 
J. A. E. E. Van Nunen and J. Wessels, A note on dynamic programming with unbounded rewards, Manag. Sci., 24 (1978), 576580. 

Go to top
