Kinetic and Related Models (KRM)

A mathematical model for value estimation with public information and herding
Pages: 29 - 44, Issue 1, March 2014

doi:10.3934/krm.2014.7.29      Abstract        References        Full text (1765.7K)           Related Articles

Marcello Delitala - Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (email)
Tommaso Lorenzi - Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (email)

1 G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economic systems by functional subsystems representation, Kin. Rel. Mod., 1 (2008), 249-278.       
2 P. Ball, Why Society is a Complex Matter, Springer-Verlag, Berlin Heidelberg, 2012.
3 J. Berg, M. Marsili, A. Rustichini and R. Zecchina, Statistical mechanics of asset markets with private information, J. Quant. Finance, 1 (2001), 203-211.
4 Y. Biondi, P. Giannoccolo and S. Galam, Formation of share market prices under heterogeneous beliefs and common knowledge, Physica A, 391 (2012), 5532-5545.
5 A. Boccabella, R. Natalini and L. Pareschi, On a continuous mixed strategy model for evolutionary game-theory, Kinet. Relat. Models, 4 (2011), 187-213.       
6 D. Borra and T. Lorenzi, Asymptotic analysis of continuous opinion dynamics models under bounded confidence, Commun. Pure Appl. Anal., 12 (2013), 1487-1499.       
7 J.-P. Bouchaud, Economics need a scientific revolution, Nature, 455 (2008), 1181.
8 J.-P. Bouchaud, The (unfortunate) complexity of the economy, Physics World, 82 (2009), 28-32.
9 L. Boudin and F. Salvarani, Modeling Opinion Formation by Means of Kinetic Equations, in Mathematical modeling of collective behavior in socio-economic and life sciences, Birkhauser, Boston, 2010.       
10 L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior, Kinet. Relat. Models, 2 (2009), 433-449.       
11 S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277.       
12 M. Cristelli, L. Pietronero and A. Zaccaria, Critical Overview of Agent-Based Models for Economics, Proceedings of the School of Physics E. Fermi, course CLXXVI, 2010.
13 B. During, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and Fokker-Planck Equations modelling Opinion Formation in the Presence of strong Leaders, Proc. Royal Soc. A, 465 (2009), 3687-3708.       
14 R. Gatignol, Théorie Cinétique des Gaz à Répartition Discréte des Vitèsses, (French) Lecture Notes in Physics, Vol. 36. Springer-Verlag, Berlin-New York, 1975.       
15 E. Eyster and M. Rabin, naïve herding in rich-information settings, AEJ Microeconomics, 2 (2010), 221-243.
16 T. Kaizoji and D. Sornette, Market Bubbles and Crashes, in Encyclopedia of quantitative finance, Wiley, New York, 2010.
17 J.-M. Lasry and P.-L. Lions, Mean field games, Japan. J. Math., 2 (2007), 229-260.       
18 J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey, International Journal of Modern Physics C, 18 (2007), 1819-1838.
19 T. Lux, Herd behaviour, bubbles and crashes, Economic Journal, 105 (1995), 881-896.
20 D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets, Physica A, 391 (2012), 715-730.
21 M. Marsili, D. Challet and R. Zecchina, Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact, Physica A: Statistical Mechanics and its Applications, 280 (2000), 522-553.
22 Q. Michard and J.-P. Bouchaud, Theory of collective opinion shifts: From smooth trends to abrupt swings, Eur. Phys. J. B, 47 (2005), 151-159.
23 B. Perthame, Trasport Equations in Biology, Frontiers in Mathematics. Birkäuser Verlag, Basel, 2007.       
24 H. A. Simon, Invariants of human behavior, Annu. Rev. Psychol., 41 (1990), 1-19.
25 G. Toscani, C. Brugna and S. Demichelis, Kinetic models for the trading of goods, J. Stat. Phys., 151 (2013), 549-566.       

Go to top