`a`
Numerical Algebra, Control and Optimization (NACO)
 

Partial $S$-goodness for partially sparse signal recovery
Pages: 25 - 38, Issue 1, March 2014

doi:10.3934/naco.2014.4.25      Abstract        References        Full text (380.0K)           Related Articles

Lingchen Kong - Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, China (email)
Naihua Xiu - Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, China (email)
Guokai Liu - Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China (email)

1 A. Bandeira, K. Scheinberg and L. N. Vicente, Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization, Math. Program., 134 (2012), 223-257.       
2 A. Bandeira, K. Scheinberg and L. N. Vicente, On partially sparse recovery, Tech. Rep., 2011.
3 A. M. Bruckstein, D. L. Donoho and M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Review, 51 (2009), 34-81.       
4 E. J. Candés, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.       
5 E. J. Candés and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), 4203-4215.       
6 E. J. Candés, M. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted l1 minimization, J Fourier Anal Appl., 14 (2008), 877-905.       
7 D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.       
8 L. Jacques, A short note on compressed sensing with partially known signal support, Signal Processing, 90 (2010), 3308-3312.
9 A. Juditsky and A. S. Nemirovski, On verifiable sufficient conditions for sparse signal recovery via l1 minimization, Math. Program., 127 (2011), 57-88.       
10 A. Juditsky, F. Karzan and A. S. Nemirovski, Verifiable conditions of l1-recovery of sparse signals with sign restrictions, Math. Program., 127 (2011), 89-122.       
11 M. A. Khajehnejad, W. Xu, A. S. Avestimehr and B. Hassibi, Analyzing weighted minimization for sparse recovery with nonuniform sparse models, IEEE Trans. Signal Process., 59 (2011), 1985-2001.       
12 A. Majumdar and R. K. Ward, An algorithm for sparse MRI reconstruction by Schatten p-norm minimization, Magnetic Resonance Imaging, 29 (2011), 408-417.
13 N. Vaswani and W. Lu, Modifed-CS: modifying compressive sensing for problems with partially known support, IEEE Trans. Signal Process., 58 (2010), 4595-4607.       

Go to top