Discussion about traffic junction modelling: Conservation laws VS HamiltonJacobi equations
Pages: 411  433,
Issue 3,
June
2014
doi:10.3934/dcdss.2014.7.411 Abstract
References
Full text (623.4K)
Related Articles
Guillaume Costeseque  Université ParisEst, Ecole des Ponts ParisTech, CERMICS & IFSTTAR, GRETTIA, 6 & 8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France (email)
JeanPatrick Lebacque  Ifsttar, COSYSGRETTIA, 1420 boulevard Newton, Cité Descartes Champs sur Marne, 77447 Marne la Vallée Cedex 2, France (email)
1 
C. Bardos, A. Y. Le Roux and J.C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 10171034. 

2 
H. BarGera and S. Ahn, Empirical macroscopic evaluation of freeway mergeratios, Transport. Res. C, 18 (2010), 457470. 

3 
G. Bretti, R. Natalini and B. Piccoli, Fast algorithms for the approximation of a fluiddynamic model on networks, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 427448. 

4 
G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks, Networks and Heterogeneous Media, 1 (2006), 5784. 

5 
C. Buisson, J. P. Lebacque and J. B. Lesort, STRADA: A discretized macroscopic model of vehicular traffic flow in complex networks based on the Godunov scheme, in Proceedings of the IEEESMC IMACS'96 Multiconference, Symposium on Modelling, Analysis and Simulation, 2, 1996, 976981. 

6 
M. J. Cassidy and S. Ahn, Driver turntaking behavior in congested freeway merges, Transportation Research Record, Journal of the Transportation Research Board, 1934 (2005), 140147. 

7 
C. Claudel and A. Bayen, LaxHopf based incorporation of internal boundary conditions into HamiltonJacobi equation. Part I: Theory, IEEE Transactions on Automatic Control, 55 (2010), 11421157. 

8 
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 18621886. 

9 
R. Corthout, G. Flötteröd, F. Viti and C. M. J. Tampère, Nonunique flows in macroscopic firstorder intersection models, Transport. Res. B, 46 (2012), 343359. 

10 
G. Costeseque, J.P. Lebacque and R. Monneau, A convergent scheme for HamiltonJacobi equations on a junction: Application to traffic, submitted, (2013). 

11 
C. F. Daganzo, On the variational theory of traffic flow: Wellposedness, duality and applications, Networks and Heterogeneous Media, AIMS, 1 (2006), 601619. 

12 
G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections, Transport. Res. B, 45 (2011), 903922. 

13 
M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. 

14 
N. H. Gartner, C. J. Messer and A. K. Rathi, Revised Monograph of Traffic Flow Theory, Online publication of the Transportation Research Board, FHWA, 2001. Available from: http://www.tfhrc.gov/its/tft/tft.htm. 

15 
J. Gibb, A model of traffic flow capacity constraint through nodes for dynamic network loading with queue spillback, Transportation Research Record: Journal of the Transportation Research Board, (2011), 113122. 

16 
S. K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Math. Sb., 47 (1959), 271290. 

17 
S. Göttlich, M. Herty and U. Ziegler, Numerical discretization of HamiltonJacobi equations on networks, Networks and Heterogeneous Media, 8 (2013), 685705. 

18 
K. Han, B. Piccoli, T. L. Friesz and T. Yao, A continuoustime linkbased kinematic wave model for dynamic traffic networks, preprint, arXiv:1208.5141, (2012). 

19 
H. Holden and N. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 4 (1995), 9991017. 

20 
C. Imbert and R. Monneau, The vertex test function for HamiltonJacobi equations on networks, preprint, arXiv:1306.2428, (2013). 

21 
C. Imbert, R. Monneau and H. Zidani, A HamiltonJacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var., 19 (2013), 129166. 

22 
M. M. Khoshyaran and J. P. Lebacque, Internal state models for intersections in macroscopic traffic flow models, Accepted in Proceedings of Traffic and Granular Flow 09, (2009). 

23 
J. A. Laval and L. Leclercq, The HamiltonJacobi partial differential equation and the three representations of traffic flow, Transport. Res. B, 52 (2013), 1730. 

24 
J. P. Lebacque, Semimacroscopic simulation of urban traffic, in Proc. of the Int. 84 Minneapolis Summer Conference. AMSE, 4, (1984), 273291. 

25 
J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in 13th ISTTT Symposium, Elsevier, (ed., J. B. Lesort), New York, 1996, 647678. 

26 
J. P. Lebacque and M. M. Khoshyaran, Macroscopic flow models (First order macroscopic traffic flow models for networks in the context of dynamic assignment), in Transportation planning, the state of the art, Kluwer Academic Press, (eds. M. Patriksson et M. Labbé), 2002, 119140. 

27 
J. P. Lebacque and M. M. Koshyaran, Firstorder macroscopic traffic flow models: intersection modeling, network modeling, in Proceedings of the 16th International Symposium on the Transportation and Traffic Theory, College Park, Maryland, USA, Elsevier, Oxford, (ed., H. S. Mahmassani), 2005, 365386. 

28 
M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317345. 

29 
G. F. Newell, A simplified theory of kinematic waves in highway traffic, (i) General theory, (ii) Queueing at freeway bottlenecks, (iii) Multidestination flows, Transport. Res. B, 4 (1993), 281313. 

30 
P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 4251. 

31 
C. Tampere, R. Corthout, D. Cattrysse and L. Immers, A generic class of first order node models for dynamic macroscopic simulations of traffic flows, Transport. Res. B, 45 (2011), 289309. 

Go to top
