Semi discrete weakly damped nonlinear KleinGordon Schrödinger system
Pages: 1525  1539,
Issue 4,
July
2014
doi:10.3934/cpaa.2014.13.1525 Abstract
References
Full text (399.4K)
Related Articles
Olivier Goubet  LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France (email)
Marilena N. Poulou  Department of Mathematics, National Technical University, Zografou Campus 157 80, Athens, Greece (email)
1 
F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equation, 83 (1990), 85108. 

2 
M. Abounouh, H. Al Moatassime, JP. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger Equations and dissipative dynamical systems, Comm. in Pure and Applied Analysis, 7 (2008), 211227. 

3 
M. Abounouh, O. Goubet and A. Hakim, Regularity of the attractor for a coupled KleinGordonSchrodinger system, Differential Integral Equations, 16 (2003), 573581. 

4 
N. Akroune, Regularity of the attractor for a weakly damped Schrodinger equation on $R$, Appl. Math. Lett., 12 (1999), 458. 

5 
J. Ball, Global attractors for damped semilinear wave equations, Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 3152. 

6 
C. Besse, A relaxation scheme for nonlinear Schrödinger equations}, SIAM J. Num. Anal., 42 (2004), 934952. 

7 
I. Chueshov and I. Lasiecka, Attractors for secondorder evolution equations with a nonlinear damping, J. of Dyn. and Diff. Equ., 16 (2004), 469512. 

8 
M. Delfour, M. Fortin and G. Payre, Finitedifference solutions of a nonlinear Schrödinger equation, J. Comput. Phys., 44 (1981), 277288. 

9 
E. Ezzoug, O. Goubet and E. Zahrouni, Semidiscrete weakly damped nonlinear 2D Schroinger equation, Differential Integral Equations, 23 (2010), 237252. 

10 
J. M. Ghidaglia and R. Temam, Attractors for damped hyperbolic equations, J. Math. Pures et Appli., 66 (1987), 273319. 

11 
O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Applicable Anal., 60 (1996), 99119. 

12 
O. Goubet and E. Zahrouni, On a time discretization of a weakly damped forced nonlinear Schrödinger equation, Comm. in Pure and Applied Analysis, 7 (2008), 14291442. 

13 
B. Guo and Y. Li, Attractor for dissipative KleinGordonSchrodinger equation in $R^3$, J. Diff. Eq., 136 (1997), 356377. 

14 
J. Hale, Asymptotic behavior of Dissipative Systems, Math. surveys and Monographs, 25 (1988), AMS, Providence. 

15 
A. Haraux, Two Remarks on Dissipative Hyperbolic Problems in nonlinear Partial Differential Equations and Their Applications College de France Seminar, vol 7, J. L. Lions and H. Brezis, Pitmann, London, 1985. 

16 
N. Karachalios, M. Stavrakakis and P. Xanthopoulos, Parametric exponential energy decay for dissipative electronion plasma waves, Zeitschrift foangewandte Mathematik und Physik ZAMP, (2005) Volume 56, Issue 2 , pp 218238. 

17 
O. Ladyzhenskaya, Attractors of Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. 

18 
P. Laurençot, Longtime behaviour for weakly damped driven nonlinear Schroinger equations in $R^N$, $N\leq 3$, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 357369. 

19 
K. Lu and B. Wang, Global attractors for the KleinGordonSchrödinger equation in unbounded domains, J. Diff. Eq., 170 (2001), 281316. 

20 
A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains, Handbook of Differential Equations, Evolutionary Partial Differential Equations, C. M. Dafermos and M. Pokorny eds., Elsevier, Amsterdam, to appear. 

21 
I. Moise, R. Rosa and X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity, 11 (1998), 13691393. 

22 
M. N. Poulou and N. M. Stavrakakis, Global Attractor for a KleinGordonSchrödinger Type System in all $R$, Nonlinear Analysis: Theory, Methods and Applications, Volume 74, Issue 7, Pages 25482562. 

23 
M. N. Poulou and N. B. Zographopoulos, Global Attractor for a degenerate Klein  Gordon  Schrödinger Type System, submitted. 

24 
G. Raugel, Global attractors in partial differential equations, Handbook of dynamical systems, Vol. 2, 885982, NorthHolland, Amsterdam, 2002. 

25 
C. Sulem and P.L. Sulem, The nonlinear Schrödinger equation. Selffocusing and wave collapse, Applied Mathematical Sciences vol. 139, Springer, 1999. 

26 
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, Second Edition, 1997. 

27 
B. Wang and H. Lange, Attractors for the KleinGordonSchrödinger equation, J. of Math. Phy., 40 (1999), 2445. 

28 
X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications to their attractors, Physica D, 88 (1995), 167175. 

29 
Y. Yan, Attractors and dimensions for discretizations of a weakly damped Schrödinger equations and a sineGordon equation, Nonlinear Anal., 20 (1993), 14171452. 

Go to top
