`a`
Inverse Problems and Imaging (IPI)
 

The Moreau envelope approach for the L1/TV image denoising model
Pages: 53 - 77, Issue 1, February 2014

doi:10.3934/ipi.2014.8.53      Abstract        References        Full text (648.3K)           Related Articles

Feishe Chen - Department of Mathematics, Syracuse University, Syracuse, NY 13244, United States (email)
Lixin Shen - Department of Mathematics, Syracuse University, Syracuse, NY 13244, United States (email)
Yuesheng Xu - Department of Mathematics, Syracuse University, Syracuse, NY 13244-1150, United States (email)
Xueying Zeng - School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China (email)

1 J. E. Aujol, G. Gilboa, T. Chan and S. Osher, Structure-texture image decomposition-modeling, algorithms, and parameter selection, International Journal of Computer Vision, 67 (2006), 111-136.
2 H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Space, Springer Press, New York, 2011.       
3 A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Science, 2 (2009), 183-202.       
4 P. Bloomfield and W. Steiger, Least Absolute Deviations: Theory, Applications, and Algorithms, Birkhäuser Boston, Boston, 1983.       
5 A. Bovik, Handbook of Image and Video Processing, Academic Press, San Diego, 2000.
6 A. Chambolle, An algorithm for total variation minimization and applications, Special issue on mathematics and image analysis, Journal of Mathematical Imaging and Vision, 20 (2004), 89-97.       
7 A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.       
8 T. Chan and S. Esedoglu, Aspects of total variation regularized l1 function approximation, SIAM Journal on Applied Mathematics, 65 (2005), 1817-1837.       
9 R. Chartrand and V. Staneva, Total variation regularization of images corrupted by non-gaussian noise using a quasi-newton method, IET Image Processing, 2 (2008), 295-303.       
10 T. Chen, W. Yin, X. Zhou, D. Comaniciu and T. Huang, Total variation models for variable lighting face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 1519-1524.
11 C. Clason, B. Jin and K. Kunisch, A duality-based splitting method for l1-tv image restoration with automatic regularization parameter choice, SIAM Journal on Scientific Computing, 32 (2010), 1484-1505.       
12 P. Combettes and V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model and Simulation, 4 (2005), 1168-1200.       
13 Y. Dong, M. Hintermuller and M. Neri, An Efficient Primal-Dual Method for $l^1$-TV image Restoration, SIAM Journal on Imaging Sciences, 2 (2009), 1168-1189.       
14 T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM Journal on Imaging Science, 2 (2009), 323-343.       
15 Y. Gousseau and J.-M. Morel, Are natural images of bounded variation?, SIAM Journal on Mathematical Analysis, 33 (2001), 634-648.       
16 X. Guo, F. Li and M. Ng, A fast $l^1$-TV algorithm for image restoration, SIAM Journal of Scientific Computing, 31 (2009), 2322-2341.       
17 B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective, SIAM Journal on Imaging Sciences, 5 (2012), 119-149.       
18 Q. Li, C. Micchelli, L. Shen and Y. Xu, A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models, Inverse Problems, 28 (2012), 20 pp.       
19 C. A. Micchelli, L. Shen and Y. Xu, Proximity algorithms for image models: Denosing, Inverse Problems, 27 (2011), 30pp.       
20 C. A. Micchelli, L. Shen, Y. Xu and X. Zeng, Proximity algorithms for the $l_1$$/$$tv$ image denosing models, Advances in Computational Mathematics, 38 (2013), 401-426.       
21 J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math., 255 (1962), 1897-2899.       
22 M. Nikolova, A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20 (2004), 99-120.       
23 R. Rockafellar, Augmented lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 8 (1976), 421-439.       
24 R. T. Rockafellar and R. Wets, Variational Analysis, Springer, 1998.       
25 C. Wu, J. Zhang and X. Tai, Augmented lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, 5 (2011), 237-261.       
26 J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM Journal on Scientific Computing, 31 (2009), 2842-2865.       
27 W. Yin, T. Chen, S. Zhou and A. Chakraborty, Background correction for cdna microarray images using the tv+l1 model, Bioinformatics, 21 (2005), 2410-2416.
28 W. Yin, D. Goldfard and S. Osher, The total variation l1 model for multiscale decomposition, Multiscale Modelling and Simulation, 6 (2007), 190-211.       
29 C. Zach, T. Pock and H. Bischof, A duality based approach for realtime tv-l1 optical flow, Pattern Recognition, 4713 (2007), 214-223.

Go to top