Convergence rates for Kaczmarztype regularization methods
Pages: 149  172,
Issue 1,
February
2014
doi:10.3934/ipi.2014.8.149 Abstract
References
Full text (451.8K)
Related Articles
Stefan Kindermann  Industrial Mathematics Institute, Johannes Kepler University Linz, A4040 Linz, Austria (email)
Antonio Leitão  Department of Mathematics, Federal University of St. Catarina, P.O. Box 476, 88040900 Florianópolis, Brazil (email)
1 
P. K. Anh and C. V. Chung, Parallel regularized Newton method for nonlinear illposed equations, Numer. Algorithms, 58 (2011), 379398. 

2 
A. B. Bakushinsky, M. Y. Kokurin and A. Smirnova, Iterative Methods for IllPosed Problems, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. 

3 
J. Baumeister, B. Kaltenbacher and A. Leitão, On LevenbergMarquardtKaczmarz iterative methods for solving systems of nonlinear illposed equations, Inverse Probl. Imaging, 4 (2010), 335350. 

4 
H. Bui and Q. Nguyen, Thermomechanical Couplings in Solids, NorthHolland Publishing Co., Amsterdan, 1987. 

5 
M. Burger and B. Kaltenbacher, Regularizing NewtonKaczmarz methods for nonlinear illposed problems, SIAM J. Numer. Anal., 44 (2006), 153182. 

6 
M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal., 244 (2007), 668690. 

7 
A. De Cezaro, M. Haltmeier, A. Leitão and O. Scherzer, On steepestdescentKaczmarz methods for regularizing systems of nonlinear illposed equations, Appl. Math. Comput., 202 (2008), 596607. 

8 
A. De Cezaro, J. Baumeister and A. Leitão, Modified iterated Tikhonov methods for solving systems of nonlinear illposed equations, Inverse Probl. Imaging, 5 (2011), 117. 

9 
T. Elfving and T. Nikazad, Properties of a class of blockiterative methods, Inverse Problems, 25 (2009), 115011, 13. 

10 
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, vol. 375 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1996. 

11 
M. Haltmeier, A. Leitão and E. Resmerita, On regularization methods of EMKaczmarz type, Inverse Problems, 25 (2009), 075008, 17pp. 

12 
M. Haltmeier, Convergence analysis of a block iterative version of the loping LandweberKaczmarz iteration, Nonlinear Anal., 71 (2009), e2912e2919. 

13 
M. Haltmeier, R. Kowar, A. Leitão and O. Scherzer, Kaczmarz methods for regularizing nonlinear illposed equations. II. Applications, Inverse Probl. Imaging, 1 (2007), 507523. 

14 
M. Haltmeier, A. Leitão and O. Scherzer, Kaczmarz methods for regularizing nonlinear illposed equations. I. Convergence analysis, Inverse Probl. Imaging, 1 (2007), 289298. 

15 
M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear illposed problems, Numer. Math., 72 (1995), 2137. 

16 
M. Hanke and W. Niethammer, On the acceleration of Kaczmarz's method for inconsistent linear systems, Linear Algebra Appl., 130 (1990), 8398, Linear algebra in image reconstruction from projections. 

17 
S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Internat. Acad. Polon. Sci. A, 1937 (1937), 355357. 

18 
B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear IllPosed Problems, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. 

19 
N. Kalton, S. MontgomerySmith, K. Oleszkiewicz and Y. Tomilov, Powerbounded operators and related norm estimates, J. London Math. Soc. (2), 70 (2004), 463478. 

20 
T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad., 37 (1961), 305308. 

21 
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, SpringerVerlag, Berlin, 1995, Reprint of the 1980 edition. 

22 
R. Kowar and O. Scherzer, Convergence analysis of a LandweberKaczmarz method for solving nonlinear illposed problems, in Illposed and inverse problems, VSP, Zeist, (2002), 253270. 

23 
Y. Lyubich, Spectral localization, power boundedness and invariant subspaces under Ritt's type condition, Studia Math., 134 (1999), 153167. 

24 
S. McCormick, An iterative procedure for the solution of constrained nonlinear equations with application to optimization problems, Numer. Math., 23 (1975), 371385. 

25 
S. McCormick, The methods of Kaczmarz and row orthogonalization for solving linear equations and least squares problems in Hilbert space, Indiana Univ. Math. J., 26 (1977), 11371150. 

26 
K.H. Meyn, Solution of underdetermined nonlinear equations by stationary iteration methods, Numer. Math., 42 (1983), 161172. 

27 
B. Nagy and J. Zemánek, A resolvent condition implying power boundedness, Studia Math., 134 (1999), 143151. 

28 
M. Z. Nashed, Continuous and semicontinuous analogues of iterative methods of Cimmino and Kaczmarz with applications to the inverse Radon transform, in Mathematical aspects of computerized tomography (Oberwolfach, 1980), vol. 8 of Lecture Notes in Med. Inform., Springer, Berlin, (1981), 160178. 

29 
F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, PA, 2001. 

30 
F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM Monographs on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. 

31 
O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. 

32 
R. Plato and U. Hämarik, On pseudooptimal parameter choices and stopping rules for regularization methods in Banach spaces, Numer. Funct. Anal. Optim., 17 (1996), 181195. 

33 
R. Plato, Iterative and Other Methods for Linear IllPosed Equations, Habilitation thesis, Department of Mathematics, TU Berlin, 1995. 

34 
A. Rieder, On the regularization of nonlinear illposed problems via inexact Newton iterations, Inverse Problems, 15 (1999), 309327. 

35 
O. Scherzer, Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl., 194 (1995), 911933. 

Go to top
