Modularity revisited: A novel dynamicsbased concept for decomposing complex networks
Pages: 191  212,
Issue 1,
June
2014
doi:10.3934/jcd.2014.1.191 Abstract
References
Full text (1083.3K)
Related Articles
Marco Sarich  Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany (email)
Natasa Djurdjevac Conrad  Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany (email)
Sharon Bruckner  Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany (email)
Tim O. F. Conrad  Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany (email)
Christof Schütte  Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany (email)
1 
A. H. AlMohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), 488511. 

2 
R. Albert and A. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 4797. 

3 
D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs, University of California, Berkeley, 2002. 

4 
M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, 6 (2003), 13731396. 

5 
G. Cho and C. Meyer, Aggregation/Disaggregation Methods for Nearly Uncoupled MArkov Chains, Technical Report NCSU no. 0416000400, North Carolina State University. 

6 
M. Dellnitz and R. Preis, Congestion and almost invariant sets in dynamical systems, in Proceedings of the 2nd international conference on Symbolic and numerical scientific computation, SNSC'01, SpringerVerlag, Berlin, Heidelberg, 2003, 183209, URL http://dl.acm.org/citation.cfm?id=1763852.1763862. 

7 
P. Deuflhard, W. Huisinga, A. Fischer and C. Schuette, Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains, Linear Algebra and its Applications, 315 (2000), 3959. 

8 
P. Deuflhard and M. Weber, Robust Perron cluster analysis in conformation dynamics, Linear Algebra and its Applications, 398 (2005), 161184. 

9 
N. Djurdjevac, S. Bruckner, T. O. F. Conrad and C. Schuette, Random walks on complex modular networks, Journal of Numerical Analysis, Industrial and Applied Mathematics. 

10 
N. Djurdjevac, M. Sarich and C. Schuette, On Markov state models for metastable processes, Proceeding of the ICM 2010, (2010), 31053131. 

11 
N. Djurdjevac, M. Sarich and C. Schütte, Estimating the eigenvalue error of markov state models, Multiscale Modeling & Simulation, 10 (2012), 6181. 

12 
P. Doyle and J. Snell, Random Walks and Electric Networks, Carus Mathematical Monographs, 22. Mathematical Association of America, Washington, DC, 1984. arXiv:math/0001057v1. 

13 
W. E and E. VandenEijnden, Transitionpath theory and pathfinding algorithms for the study of rare events, Annual Review of Physical Chemistry, 61 (2010), 391420. 

14 
S. Fortunato, Community detection in graphs, Physics Reports, 486 (2010), 75174. arXiv:0906.0612v2. 

15 
P. Garrido and J. Marro (eds.), Exploring Complex Graphs by Random Walks, vol. 661, American Institute of Physics, 2002. 

16 
M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences, 99 (2002), 78217826. 

17 
W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators, in New Algorithms for Macromolecular Simulation (eds. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schuette and R. Skeel), vol. 49 of Lecture Notes in Computational Science and Engineering, SpringerVerlag, 2006, chapter 11, 167182. 

18 
H. Jeong, B. Tombor, R. Albert, Z. Oltvai and A. Barabasi, The largescale organization of metabolic networks, Nature, 407 (2000), 651654. 

19 
S. Lafon and A. Lee, Diffusion maps and coarsegraining: A unified framework for dimensionality reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 13931403. 

20 
T. Li, W. E and E. V. Eijnden, Optimal partition and effective dynamics of complex networks, Proc. Nat. Acad. Sci., 105. 

21 
T. Li, J. Liu and W. E, A probabilistic framework for network partition, Phys. Rev. E, 80 (2009), 026106. 

22 
L. Lovasz, Random walks on graphs: A survey., Bolyayi Society Mathematical Studies, 2 (1996), 353397. 

23 
U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), 395416. 

24 
I. Marek and P. Mayer, Aggregation/disaggregation iterative methods applied to Leontev and Markov chain models, Appl. Math., 47 (2002), 139156. 

25 
R. Mattingly, A revised stochastic complementation algorithm for nearly completely decomposable Markov chains, ORSA Journal on Computing, 7 (1995), 117124. 

26 
E. Meerbach, C. Schuette and A. Fischer, Eigenvalue bounds on restrictions of reversible nearly uncoupled Markov chains, Lin. Alg. Appl., 398 (2005), 141160. 

27 
M. Meila and J. Shi, A random walks view of spectral segmentation, AI and Statistics (AISTATS). 

28 
P. Metzner, C. Schuette and E. VandenEijnden, Transition path theory for Markov jump processes, Multiscale Modeling and Simulation, 7 (2009), 11921219. 

29 
C. D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems, SIAM Rev, 31 (1989), 240272. 

30 
M. C. V. Nascimento and A. C. P. L. F. De Carvalho, Spectral methods for graph clustering: A survey, European Journal Of Operational Research, 211 (2011), 221231. 

31 
M. E. J. Newman, Finding community structure in networks using the eigenvectors of matrices, PHYS.REV.E, 74 (2006), 036104. 

32 
M. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167256. 

33 
M. Newman, A. Barabasi and D. Watts, The Structure and Dynamics of Networks, Princeton Univ Press, Princeton, NJ, 2006. 

34 
M. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, 69 (2004), 026113. 

35 
V. Nicosia, G. Mangioni, V. Carchiolo and M. Malgeri, Extending the definition of modularity to directed graphs with overlapping communities, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009), p03024. 

36 
J. Noh and H. Rieger, Random walks on complex networks, Phys. Rev. Lett., 92 (2004), 118701. 

37 
G. Palla, I. Derenyi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435 (2005), 814818. 

38 
M. A. Porter, J.P. Onnela and P. J. Mucha, Communities in networks, World Wide Web Internet And Web Information Systems, 56 (2009), 10821097. 

39 
J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, PHYS.REV.E, 74 (2006), 016110. 

40 
M. Rosvall and C. Bergstrom, Maps of random walks on complex networks reveal community structure, Proc Natl Acad Sci, 105 (2008), 11181123. 

41 
F. Santo, Community detection in graphs, Physics Reports, 486 (2010), 75174. 

42 
M. Sarich and C. Schuette, Approximating selected nondominant timescales by markov state models, Comm Math Sci., 10 (2012), 10011013. 

43 
M. Sarich, C. Schuette and E. VandenEijnden, Optimal fuzzy aggregation of networks, Multiscale Modeling and Simulation, 8 (2010), 15351561. 

44 
M. Sarich, Projected Transfer Operators, PhD thesis, FU Berlin, 2011. 

45 
C. Schuette and W. Huisinga, Biomolecular conformations can be identified as metastable sets of molecular dynamics, in Handbook of Numerical Analysis, Elsevier, X (2003), 699744. 

46 
C. Schuette, F. Noe, J. Lu, M. Sarich and E. VandenEijnden, State models based on milestoning, J. Chem. Phys, 134 (2011), 204105. 

47 
S. Van Dongen, Graph Clustering by Flow Simulation, PhD thesis, University of Utrecht, 2000, URL http://igiturarchive.library.uu.nl/dissertations/1895620/inh oud.htm. 

Go to top
