Twospecies particle aggregation and stability of codimension one solutions
Pages: 1411  1436,
Issue 5,
July
2014
doi:10.3934/dcdsb.2014.19.1411 Abstract
References
Full text (2066.3K)
Related Articles
Alan Mackey  University of California, Los Angeles, Department of Mathematics, Box 951555, Los Angeles, CA 900951555, United States (email)
Theodore Kolokolnikov  Dalhousie University, Department of Mathematics and Statistics, Halifax, Nova Scotia, B3H 3J5, Canada (email)
Andrea L. Bertozzi  University of California Los Angeles, Department of Mathematics, 520 Portola Plaza Box 951555, Los Angeles, CA 900951555, United States (email)
1 
E. Altschuler, T. Williams, E. Ratner, R. Tipton, R. Stong, F. Dowla and F. Wooten, Possible global minimum lattice configurations for Thomson's problem of charges on a sphere, Physical Review Letters, 78 (1997), 26812685. 

2 
D. Balague, J.A. Carrillo, T. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy, Archive for Rational Mechanics and Analysis, 209 (2013), 10551088. 

3 
A. Bernoff and C. Topaz, A primer of swarm equilibria, SIAM Journal on Applied Dynamical Systems, 10 (2011), 212250. 

4 
A. L. Bertozzi, H. Sun, T. Kolokolnikov, D. Uminsky and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, preprint, 2013. Available from: http://www.math.ucla.edu/~bertozzi/papers/bigringfinal.pdf. 

5 
H. Cabral and D. Schmidt, Stability of relative equilibria in the problem of $n+1$ vortices, SIAM Journal on Mathematical Analysis, 31 (1999), 231250. 

6 
Y. Chen, T. Kolokolnikov and D. Zhirov, Collective behaviour of large number of vortices in the plane, Proceedings of the Royal Society A, 469 (2013), 20130085. 

7 
H. Cohn and A. Kumar, Algorithmic design of selfassembling structures, PNAS, 106 (2009), 95709575. 

8 
C. Conca, E. Espejo and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic KellerSegel system in $\mathbbR^2$, European Journal of Applied Mathematics, 22 (2011), 553580. 

9 
I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decisionmaking in animal groups on the move, Nature, 433 (2005), 513516. 

10 
G. Crippa and M. LécureuxMercier, Existence and uniqueness of measure solutions for a system of continuity equations with nonlocal flow, Nonlinear Differential Equations and Applications, 20 (2013), 523537. 

11 
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Selfpropelled particles with softcore interactions: Patterns, stability, and collapse, Physical Review Letters, 96 (2006), 104302. 

12 
B. Düring, P. Markowich, J. F. Pietschmann and M. T. Wolfram, Boltzmann and FokkerPlanck equations modelling opinion formation in the presence of strong leaders, Proceedings of the Royal Society A, 465 (2009), 36873708. 

13 
C. Escudero, F. Macià, and J.J.L. Velázquez, Twospeciescoagulation approach to consensus by group level interactions, Physical Review E, 82 (2010), 016113, 6pp. 

14 
E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blowup in a twospecies model for chemotaxis, Analysis, 29 (2009), 317338. 

15 
R. C. Fetecau, Y. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 26812716. 

16 
M. Di Francesco and S. Fagioli, Measure solutions for nonlocal interaction PDEs with two species, Nonlinearity, 26 (2013), 27772808. 

17 
J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, 1st ed., John Wiley & Sons, Inc., New York, NY, USA, 1992. 

18 
D. Holm and V. Putkaradze, Aggregation of finitesize particles with variable mobility, Physical Review Letters, 95 (2005), 226106. 

19 
D. Horstmann, Generalizing the KellerSegel model: Lyapunov functionals, steady state analysis, and blowup results for multispecies chemotaxis models in the presence of attraction and repulsion between competitive interacting species, Journal of Nonlinear Science, 21 (2011), 231270. 

20 
T. Kolokolnikov, Y. Huang and M. Pavlovski, Singular patterns for an aggregation model with a confining potential, Physica D, 260 (2013), 6576. 

21 
T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from twodimensional particle interactions, Physical Review E, 84 (2011), 015203. 

22 
T. Kostić and A. L. Bertozzi, Statistical density estimation using threshold dynamics for geometric motion, Journal of Scientific Computing, 54 (2013), 513530. 

23 
H. Levine, E. BenJacob, I. Cohen and W. Rappel, Swarming patterns in microorganisms: Some new modeling results, in Decision and Control, 2006 45th IEEE Conference on, (2006), 50735077. 

24 
H. Levine, W. Rappel and I. Cohen, Selforganization in systems of selfpropelled particles, Physical Review E, 63 (2000), 017101. 

25 
Y. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, selfpropelled particle system, Physica D, 232 (2007), 3347. 

26 
Y. Chuang, Y. R. Huang, M. R. D'Orsogna and A. L. Bertozzi, Multivehicle flocking: Scalability of cooperative control algorithms using pairwise potentials, in IEEE International Conference on Robotics and Automation, (2007), 22922299. 

27 
T. Liu, Hydrophilic macroionic solutions: What happens when soluble ions reach the size of nanometer scale?, Langmuir, 26 (2010), 92029213. 

28 
T. Liu, M. Langston, D. Li, J. M. Pigga, C. Pichon, A. Todea and A. Müller, Selfrecognition among different polyprotic macroions during assembly processes in dilute solution, Science, 331 (2011), 15901592. 

29 
A. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002. 

30 
A. Mogilner, L. EdelsteinKeshet, L. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, Journal of mathematical biology, 47 (2003), 353389. 

31 
R. Ramírez and T. Pöschel, Coefficient of restitution of colliding viscoelastic spheres, Physica Review E, 60 (1999), 4465. 

32 
R.M. Colombo, M. Garavello and M. LécureuxMercier, A class of nonlocal models for pedestrian traffic, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150023,34p. 

33 
H. Sun, D. Uminsky and A. L. Bertozzi, A generalized BirkhoffRott equation for twodimensional active scalar problems, SIAM Journal on Applied Mathematics, 72 (2012), 382404. 

34 
J. I. Tello and M. Winkler, Stabilization in a twospecies chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 14131425. 

35 
C. Topaz, A. Bernoff, S. Logan and W. Toolson, A model for rolling swarms of locusts, The European Physical Journal Special Topics, 157 (2008), 93109. 

36 
C. Topaz, A. L. Bertozzi and M. E. Lewis, A nonlocal continuum model for biological aggregations, Bulletin of Mathematical Biology, 68 (2006), 16011623. 

37 
L. Tsimring, H. Levine, I. Aranson, E. BenJacob, I. Cohen, O. Shochet and W. N. Reynolds, Aggregation patterns in stressed bacteria, Physical review letters, 75 (1995), 18591862. 

38 
J. von Brecht and D. Uminsky, On soccer balls and linearized inverse statistical mechanics, Journal of Nonlinear Science, 22 (2012), 935959. 

39 
J. von Brecht, D. Uminsky, T. Kolokolnikov and A. L. Bertozzi, Predicting pattern formation in particle interactions, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1140002, 31 pp. 

40 
G. Wolansky, Multicomponents chemotactic system in the absence of conflicts, European Journal of Applied Mathematics, 13 (2002), 641661. 

Go to top
