ISSN 21553289(print)
ISSN 21553297(online) 
Current volume

Journal archive


NACO is covered in Scopus.
Numerical Algebra, Control and Optimization (NACO) is an international journal devoted to publishing peerrefereed high quality original papers on any nontrivial interplay between numerical linear algebra, control and optimization. These three areas are closely related and complementary. The developments of many fundamentally important theories and methods in optimization and control are based on numerical linear algebra. Efficient implementation of algorithms in optimization and control also provides new theoretical challenges in numerical linear algebra. Furthermore, optimization theory and methods are widely used in control theory, especially for solving practical control problems. On the other hand, control problems often initiate new theory, techniques and methods to be developed in optimization.
The main objective of NACO is to provide a single forum for and promote collaboration between researchers and practitioners in these areas. Significant practical and theoretical problems in one area can be addressed by the use of appropriate recent advanced theory techniques and methods from the other two areas leading to the discovery of new ideas and the development of novel methodologies in numerical algebra, control and optimization.
The journal adheres to the publication ethics and malpractice policies outlined by COPE.
Archived in Portico 
TOP 10 Most Read Articles in NACO, October 2016
1 
Jensen's inequality for quasiconvex functions
Volume 2, Number 2, Pages: 279  291, 2012
S. S. Dragomir
and C. E. M. Pearce
Abstract
References
Full Text
Related Articles
Some inequalities of Jensen type and connected results
are given for quasiconvex functions on convex sets in real linear spaces.

2 
Some new bounds for two mappings related
to the HermiteHadamard inequality for convex functions
Volume 2, Number 2, Pages: 271  278, 2012
S. S. Dragomir
and I. Gomm
Abstract
References
Full Text
Related Articles
Some new results concerning two mappings associated to the celebrated
HermiteHadamard integral inequality for convex function with applications
for special means are given.

3 
Solving the seepage problems with free surface by mathematical programming method
Volume 5, Number 4, Pages: 351  357, 2015
Jinzhi Wang
and Yuduo Zhang
Abstract
References
Full Text
Related Articles
The nonsmooth equations model for seepage problems is proposed based on the basic principles of the seepage dynamic system and the finite element discrete method. The mathematical programming method is therefore applied. The free surface of seepage is plotted through interpolation with pressure intensity on the nodes. The numerical results show the new method is simple and rapid in convergence rate.

4 
Optimal control of microbial fedbatch culture involving
multiple feeds
Volume 5, Number 4, Pages: 339  349, 2015
Jinggui Gao,
Xiaoyan Zhao
and Jinggang Zhai
Abstract
References
Full Text
Related Articles
In this paper, we consider optimal control problem in the fedbatch
fermentation of glycerol by Klebsiella pneumoniae with open
loop glycerol input and pH logic control, while the feeding volume of glycerol is regarded
as the control variable. To maximize the concentration of 1,3PD at the terminal time, an
optimal control model is established, and a computational approach
is constructed to solve the control model. Finally, the numerical
simulations show that the terminal concentration of producing 1,3PD has
been increased obviously by employing the optimal feeding strategy.

5 
Dynamic simulation of a SEIQRV epidemic model based on cellular automata
Volume 5, Number 4, Pages: 327  337, 2015
Xinxin Tan,
Shujuan Li,
Sisi Liu,
Zhiwei Zhao,
Lisa Huang
and Jiatai Gang
Abstract
References
Full Text
Related Articles
A SEIQRV epidemic model, including the exposure period, is established based on cellular automata. Considerations are made for individual mobility and
heterogeneity while introducing measures of vaccinating susceptible populations and quarantining infectious populations. Referencing the random walk
cellular automata and extended Moore neighborhood theories, influenza A(H1N1) is used as example to create a dynamic simulation using Matlab software.
The simulated results match real data released by the World Health Organization, indicating the model is valid and effective. On this basis, the effects
of vaccination proportion and quarantine intensity on epidemic propagation are analogue simulated, obtaining their trends of influence
and optimal control strategies are suggested.

6 
On producttype generalized block AOR method for augmented linear systems
Volume 2, Number 4, Pages: 797  809, 2012
Fang Chen,
Ning Gao
and Yao Lin Jiang
Abstract
References
Full Text
Related Articles
The generalized inexact accelerated overrelaxation (
GIAOR) method was presented by Bai, Parlett and Wang (Numer. Math.
102(2005)138) for solving the augmented system of linear equations.
In this paper, a producttype generalized block AOR (
PGBAOR ) method
is proposed, which is a twostep generalization of
the GIAOR method. Both convergence and semiconvergence of the
PGBAOR method are proved for the nonsingular and the singular
augmented linear systems.

7 
A quasiNewton trust region method based on a new fractional model
Volume 5, Number 3, Pages: 237  249, 2015
Honglan Zhu,
Qin Ni
and Meilan Zeng
Abstract
References
Full Text
Related Articles
In this paper, a general fractional model is proposed. Based on the fractional model, a quasiNewton trust region algorithm is presented for unconstrained optimization. The trust region subproblem is solved in the simplified way. We discussed the choices of the parameters in the fractional model and prove the global convergence of the proposed algorithm. Some primary test results shows the feasibility and validity of the fractional model.

8 
Modeling and identification of hybrid dynamic system in microbial continuous fermentation
Volume 5, Number 4, Pages: 359  368, 2015
Yanan Mao,
Caixia Gao,
Ruidong Yan
and Aruna Bai
Abstract
References
Full Text
Related Articles
In this paper, a hybrid dynamic model using fuzzy expert system is investigated in the process of glycerol bioconversion to 1,3PD by Klebsiella pneumoniae(K.pneumoniae). In continuous culture, we assume that 1,3PD passes the cell membrane of K.pneumoniae by passive diffusion coupling with active transport. To determine the parameters of the proposed system, a parameter identification model is established according to the biological robustness. An optimization algorithm is developed in order to solve the identification model. Numerical simulations indicate that proposed hybrid model adding fuzzy system is more appropriate and the optimization algorithm is effective.

9 
Grasping force based manipulation for multifingered handarm Robot using neural networks
Volume 4, Number 1, Pages: 59  74, 2013
ChunHsu Ko
and JingKun Chen
Abstract
References
Full Text
Related Articles
Multifingered handarm robots play an important role in dynamic manipulation tasks. They can grasp and move various shaped objects. It is important to plan the motion of the arm and appropriately control the grasping forces for the multifingered handarm robots. In this paper, we perform the grasping force based manipulation of the multifingered handarm robot by using neural networks. The motion parameters are analyzed and planned with the constraint of the multiarms kinematics. The optimal grasping force problem is recast as the secondorder cone program. The semismooth Newton method with the FischerBurmeister function is then used to efficiently solve the secondorder cone program. The neural network manipulation system is obtained via the fitting of the data that are generated from the optimal manipulation simulations. The simulations of optimal grasping manipulation are performed to demonstrate the effectiveness of the proposed approach.

10 
An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials
Volume 4, Number 1, Pages: 75  91, 2013
Nur Fadhilah Ibrahim
Abstract
References
Full Text
Related Articles
In this paper, we propose an iterative method for calculating the
largest eigenvalue of nonhomogeneous nonnegative polynomials. This
method is a generalization of the method in [19]. We also
prove this method is convergent for irreducible nonhomogeneous
nonnegative polynomials.

Go to top

