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Abstract. We construct a nonstandard finite difference scheme for the two coupled
ODE’s that model glycolysis. The primary emphasis is having the scheme satisfy a
positivity condition and also retain the limit-cycle behavior for certain values of the
parameters. We show that this is possible and give a full discussion of the scheme
along with some of its numerical properties.

1. Introduction. A basic biochemical reaction occurring in living cells is glycoly-
sis. An elementary model was given by Sel’kov [1] and is represented by the following
two coupled first-order differential equations [2]

dx

dt
= −x + ay + x2y

dy

dt
= b− ay − x2y. (1.1)

These equations are in dimensionless form with the parameters (a, b) being non-
negative. The two dependent variables, x and y, can only be non-negative since they
stand for (dimensionless) chemical concentrations. Consequently, the physically
relevant solutions to Eqs. (1) have the property

x0 = x(0) > 0, y0 = y(0) > 0

=⇒ x(t) > 0, y(t) > 0. (1.2)
This condition of positivity [3] must also be satisfied by any scheme used to provide
accurate numerical solutions for Eqs. (1). Another important feature of Eqs. (1) is
that under a certain restriction on the parameter values, a and b, a stable limit-cycle
can exist. Again, any viable numerical integration scheme should also have a stable
limit-cycle solution for suitable values of the time step-size.

Our major purpose in this paper is to construct a nonstandard finite difference
scheme [4] for Eqs. (1) which satisfies a positivity condition on its numerical so-
lutions. Further, we show, using numerical experiments, that a stable limit-cycle
exists under the appropriate limits on the parameters (a, b). A brief discussion is
given of the bifurcation which occurs as the time step-size is increased with (a, b)
held fixed at values for which the differential equations have a stable limit-cycle and
an unstable fixed-point.
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The main advantage of a nonstandard finite difference scheme construction pro-
cedure is that it easily allows the enforcement of important dynamical properties
of the exact solutions [4] for the numerical solutions. Consequently, the elemen-
tary numerical instabilities, such as the violation of positivity [3] for the numerical
results when the actual solutions do satisfy this condition, cannot occur. While
this method is currently not entirely rigorous, it is at a stage of development such
that very usefully new discrete schemes can be constructed and applied to many
important dynamical systems [2, 3, 4].

In the next section, we construct the nonstandard finite difference scheme (NSFDS)
and examine in detail the reasons for its particular structure. We also illustrate the
quality of its numerical solutions by providing figures for the case where a = 0.08
and b = 0.6. Also provided is a sequence of figures showing what happens as ∆t = h
is increased. The paper concludes with a brief discussion of future research issues
to be studied.

2. A Nonstandard Discrete Model. A complete discussion of the general method
and philosophy of nonstandard finite difference schemes (NSFDS) is given in Mick-
ens [4]. For Eqs. (1), the following NSFDS is constructed:

xk+1 − xk

φ
= −xk+1 + ayk + 2x2

kyk − (xkyk)xk+1, (2.1a)

yk+1 − yk

φ
= b− ayk+1 − (xk+1)2yk+1, (2.1b)

where tk = (∆t)k = hk, h = time step-size; xk and yk are, respectively, approxima-
tions to x(tk) and y(tk); and φ is any function having the property

φ = h + O(h2). (2.1c)

A particularly useful form for φ is [3, 4]

φ =
(

1− e−λh

λ

)
, (2.1d)

where λ−1 is the smallest time-scale occurring in the equations. In dimensionless
time units for Eqs. (1), the three relevant time scales are [4]

T1 =
1
a
, T2 = 1, T3 =

1
b2/3

, (2.2)

and λ is defined to be

λ ≡ Min(T−1
1 , T−1

2 , T−1
3 ) = Min(a, 1, b2/3). (2.3)

The discrete scheme for Eqs. (1) given by Eqs. (2.1) have the following significant
features:

(i) The discrete first-derivatives have the structure

dx

dt
−→ xk+1 − xk

φ

dy

dt
−→ yk+1 − yk

φ
, (2.4)

as compared to the simple forward-Euler replacements where φ = h.
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(ii) The first and third terms, on the right-side of the dx/dt equation, have the
discrete forms

−x → −xk+1

x2y = 2x2y − x2y → 2x2
kyk − (xkyk)xk+1. (2.5)

(iii) Similar replacements are made for the second and third terms on the right-
side of the dy/dt equation, i.e.,

−ay → −ayk+1

−x2y → −(xk+1)2yk+1, (2.6)

where, it should be noted x is replaced by xk+1 and not xk.
(iv) Eqs. (2.1a) and (2.1b) are, respectively, linear in xk+1 and yk+1. Conse-

quently, solving for these variables gives

xk+1 =
xk + (aφ)yk + (2φ)x2

kyk

1 + φ + φxkyk
, (2.7a)

yk+1 =
bφ + yk

1 + aφ + φ(xk+1)2
. (2.7b)

For numerical evaluation, one proceeds as follows: First, select (xk, yk). Second,
calculate xk+1 using Eq. (2.7a). Third, using this value for xk+1 and the values for
(xk, yk), calculate yk+1.

(v) Inspection of Eqs. (2.7) clearly shows that this NSFDS satisfies the positivity
condition, i.e.,

x0 > 0, y0 > 0

=⇒ xk > 0, yk > 0. (2.8)

We have calculated numerical solutions to Eqs. (1), using the NSFDS given by
Eqs. (2.7) for a broad range of parameter values (a, b) and initial values (x0, y0).
Figures 1 and 2 show typical results; they were obtained for

a = 0.008, b = 0.6, λ = 0.08, x0 = 1, y0 = 1. (2.9)

The following is a brief summary of what was found:

(i) The above indicated values of (a, b) allow the existence of a stable limit-cycle
[2]. For time step-size values satisfying the constraint

0 < h < 0.248, (2.10)

a stable limit-cycle was obtained. Thus, the fixed-point interior to the limit-cycle
was unstable.

(ii) For h > 0.248, the numerical solutions were oscillatory, but converged to the
fixed-point.

(iii) The results from (i) and (ii) imply that the stability of the fixed-point is
influenced by the value of the step-size.
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(iv) The general expectation is, for parameters (a, b) selected such that a stable
limit-cycle exists for the differential equations, the NSFDS will only have a numer-
ically derived stable limit-cycle if the step-size is smaller than a critical value hc.

(v) The numerical calculations also indicate that the amplitude and frequency
are dependent on the step-size.

All of these results are expected for any general numerical integration scheme and
have been discussed in the paper by Mickens and Gumel [6]. The advantage of the
NSFDS given here is that it always maintains the important positivity condition.
Moreover, for accurate simulations of Eqs. (1), the requirement of Eq. (2.3) must
be satisfied along with the additional condition

λh ¿ 1. (2.11)

3. Discussion. The major reason for this study of a NSFDS for the equations
modeling glycolysis is to demonstrate that this scheme preserves the important
positivity condition which is an essential feature of the solutions to the original
differential equations. General methods for calculating numerical solutions to dif-
ferential equations [7] do not have this property. With this issue in mind, it becomes
clear that any scheme that does not possess the positivity condition can allow the
possibility for numerical instabilities to exist [3, 4]. Since Eqs. (1) also have a limit-
cycle solution for certain values of the parameter (a, b), our NSFDS can be put to
a very strong test, i.e., does the imposition of the positivity condition lead to the
destruction of the limit-cycle. Our numerical experiments demonstrate that the
answer is no, it does not.

It is rather easy to show that Eqs. (1) and (2.7) both have the same fixed-point,

x∗ = b, y∗ =
b

a + b2
. (3.1)

Defining τ as

τ ≡ −b4 + (2a− 1)b2 + (a + a2)
a + b2

, (3.2)

Strogatz [2] shows that the fixed-point has the following stability properties:

τ > 0 : unstable, (3.3a)

τ < 0 : stable. (3.3b)

The corresponding stability condition for the NSFDS of Eqs. (2.1) will in general be
a more complex relation since the function φ(h, a, b) will also appear in the equation
determining the eigenvalues at the fixed-point. An investigation of possible bifur-
cation behavior as the step-size is varied, for fixed (a, b), may provide interesting
results on the mathematical properties of our NSFDS. Another study might consider
leaving φ(h, a, b) unspecified and determine its functional form by the requirement
that the NSFDS have exactly the same stability condition as given by Eq. (3.2).
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Figure 1. For these plots h = 0.01, x0 = 1, and y0 = 1. A stable limit-cycle exists.



628 RONALD E. MICKENS

Figure 2. For these plots h = 0.249, x0 = 1, and y0 = 1. A stable fixed-point exists.
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