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Abstract. The basin of attraction of an equilibrium or periodic orbit can be
determined by sublevel sets of a Lyapunov function. A Lyapunov function
is a function with negative orbital derivative, which is defined by LV (t, x) =
〈∇xV (t, x), f(t, x)〉+ ∂tV (t, x). We construct a Lyapunov function by approx-
imately solving a Cauchy problem with a linear PDE for its orbital derivative
and boundary conditions on a non-characteristic hypersurface. For the ap-
proximation we use meshless collocation. We describe the general approximate

reconstruction of multivariate functions, which are periodic in one variable,
from discrete data sets and derive error estimates. This method has already
been applied to autonomous dynamical systems. In this paper, however, we
consider a time-periodic ODE ẋ = f(t, x), x ∈ R

n, and study the basin of
attraction of an exponentially asymptotically stable periodic orbit.

1. Introduction. In this article we consider the time-periodic ODE ẋ = f(t, x),
f ∈ Cσ(R × R

n,Rn), σ ≥ 1, and assume that Γ is an exponentially asymptotically
stable periodic orbit with basin of attraction A(Γ). A Lyapunov function is a
function with negative orbital derivative, given by LV (t, x) = 〈∇xV (t, x), f(t, x)〉+
∂tV (t, x). If V is such a Lyapunov function and if sV is a good approximation to
V , which means that it satisfies |LV (t, x) − LsV (t, x)| ≤ ǫ, then we can conclude

LsV (t, x) ≤ ǫ+ LV (t, x) < 0

for sufficiently small ǫ > 0. Hence, sV is, in principle, a Lyapunov function itself
and can be used to determine the basin of attraction.

We will show in Theorem 2.4 that there is a Lyapunov function V ∈ Cσ(A(Γ) \
Γ,R) satisfying

LV (t, x) = −c1 for all (t, x) ∈ A(Γ) \ Γ and (1)

V (t, x) = c2 for all x ∈ Ω, (2)

where c1 > 0, c2 ∈ R and Ω is a non-characteristic hypersurface, cf. Definition
2.2. Equation (1) is a linear first order partial differential equation with boundary
conditions (2).
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Hence, it seems to be natural to approximate the Lyapunov function V by choos-
ing collocation points x̃j := (tj , xj) ∈ A(Γ) \ Γ, 1 ≤ j ≤ N and x̃j := (tj , xj) ∈ Ω,
N + 1 ≤ j ≤ N +M to enforce the collocation conditions for the approximation sV

LsV (tj , xj) = −c1 1 ≤ j ≤ N, (3)

sV (tj , xj) = c2 N + 1 ≤ j ≤ N +M. (4)

Such a problem can be solved efficiently within the framework of generalized in-
terpolation, as it has recently been done for Lyapunov functions of autonomous
systems (see [6]). The theory was developed in a general framework based upon
earlier results on generalized interpolation in [3, 4, 8, 13] and also applies to this
more general situation. The meshless reconstruction of the function V and the error
estimates face the problem that V and thus sV are periodic in the t-variable. There-
fore, a kernel is constructed which is periodic in the t-argument. The t-periodic case
without boundary conditions was studied in [7].

In Section 2 the existence and smoothness of the Lyapunov function satisfying
the Cauchy problem (1)-(2) is shown. In Section 3 the meshless reconstruction of a
multivariate function which is periodic in one variable is discussed and applied to
the construction of a Lyapunov function. We also give an example comparing this
approach to [7], which considered a first-order PDE without boundary conditions.

2. Dynamical Systems. We consider a time-periodic ODE of the form

ẋ = f(t, x) (5)

where f(t + T, x) = f(t, x) for all (t, x) ∈ R × R
n and f ∈ Cσ(R × R

n,R), σ ≥ 1.
The ODE induces a dynamical system on the cylinder S1

T × R
n with semi-flow

St : S
1
T × R

n → S1
T × R

n,

St(t0, x) = ((t0 + t) mod T, x(t; t0, x0)),

where x(t; t0, x0) denotes the solution x(t) of (5) at time t with initial condition
x(t0) = x0.

We assume that the system has a periodic solution x(t) defining the periodic
orbit Γ; without loss of generality we assume that Γ = S1

T × {0} is a solution, i.e.
f(t, 0) = 0. Moreover, we assume that Γ is exponentially asymptotically stable,
i.e. all Floquet exponents are strictly negative. The set of all initial values such
that the corresponding solutions approach Γ defines the basin of attraction A(Γ) =
{(t0, x0) ∈ S1

T × R
n | limt→∞ dist(St(t0, x0),Γ) = 0}.

2.1. Basin of attraction and Lyapunov functions. The basin of attraction can
be determined using a Lyapunov function. The main characteristic of a Lyapunov
function V : S1

T × R
n → R is that V is decreasing along solutions of (5). This is

expressed by a negative orbital derivative, i.e. the derivative along solutions of (5).
The orbital derivative of a function V ∈ C1(S1

T × R
n,R) is given by

LV (t, x) = 〈∇xV (t, x), f(t, x)〉 + ∂tV (t, x).

Note that the chain rule implies LV (t, x) = d
dτ V (Sτ (t, x))

∣∣
τ=0

.
For Theorem 2.1 we assume that the function V has negative orbital derivative

in a sublevel set K with the exception of a certain set E. If we know that E ⊆
A(Γ), then K ⊆ A(Γ) by the following well-known theorem. The reason for this
exceptional set is that the function sV , which we will construct later, has no negative
orbital derivative in a neighborhood of Γ in general. A set E with E ⊆ A(Γ) will
later be obtained by considering a local Lyapunov function.
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Theorem 2.1 ([7, Theorem 2.4]). Consider (5) with f ∈ C1(S1
T ×R

n,Rn) and let
Γ = S1

T × {0} be a periodic orbit of (5). Let B ⊆ R
n be an open neighborhood of 0.

Let V ∈ C1(S1
T ×R

n,R), K ⊆ S1
T ×B be a compact set and Γ ⊆ E ⊆ S1

T ×B be
an open set. Let

1. Γ ⊆
◦
K,

2. LV (t, x) < 0 for all (t, x) ∈ K \ E,
3. K = {(t, x) ∈ S1

T ×B | V (t, x) ≤ R} for R ∈ R, i.e. K is a sublevel set of V ,
4. E ⊆ A(Γ).

Then K ⊆ A(Γ).

2.2. Existence of Lyapunov functions. We can easily calculate a Lyapunov
function for a linear autonomous differential equation of the form ẋ = Ax, where
A ∈ R

n×n. This enables us to find a local Lyapunov function for special systems
which are adjacent to an autonomous one, i.e. they are of the form

ẋ = f(t, x, λ) = g(x) + h(t, x, λ) (6)

with λ small and some conditions on g and h, cf. [7, Proposition 2.6]. This function
is called a local Lyapunov function, since the orbital derivative is negative only in
a small neighborhood ‖x‖ ≤ δ of the zero solution.

On the other hand we have the existence Theorem 2.4 for a global Lyapunov
function which has negative orbital derivative in the whole basin of attraction,
satisfying an equation for its orbital derivative. However, this Lyapunov function
cannot be calculated in general, but it will be approximated by meshless collocation.

In contrast to [7, Theorem 2.7] where the Lyapunov function with LV (t, x) =
−‖x‖2 was considered, we study a Lyapunov function satisfying LV (t, x) = −c1.
This Lyapunov function is only defined on A(Γ) \ Γ and tends to −∞ for x → Γ.
By fixing V on a non-characteristic hypersurface, V is uniquely determined as the
solution of a non-characteristic Cauchy problem with a linear first-order PDE.

Let us first define a non-characteristic hypersurface which is a non-characteristic
datum manifold; the definition is similar to the autonomous case, cf. [5, Definition
2.36]. We show in Lemma 2.3 how to obtain a non-characteristic hypersurface
through a Lyapunov function.

Definition 2.2 (Non-characteristic hypersurface). Consider ẋ = f(t, x), where
f ∈ Cσ(S1

T × R
n,Rn), σ ≥ 1. Let h ∈ Cσ(S1

T × R
n,R). The set Ω ⊆ S1

T × R
n is

called a non-characteristic hypersurface if

1. Ω is compact in S1
T × R

n,
2. h(t, x) = 0 if and only if (t, x) ∈ Ω,
3. Lh(t, x) < 0 holds for all (t, x) ∈ Ω, and
4. for each (t, x) ∈ A(Γ)\Γ there is a time θ(t, x) ∈ R such that Sθ(t,x)(t, x) ∈ Ω.

An example for a non-characteristic hypersurface is the level set of a Lyapunov
function within its basin of attraction. The proof of the following lemma is similar
to [5, Lemma 2.37].

Lemma 2.3 (Level sets define a non-characteristic hypersurface). Let W ∈ C1(S1
T×

R
n,Rn) be a Lyapunov function. In particular, let K ⊆ S1

T × R
n be a compact set

and K ⊆ B ⊆ S1
T × R

n be an open set such that

1. Γ ⊆
◦
K,

2. W (t, x) = 0 for all (t, x) ∈ Γ,
3. LW (t, x) < 0 for all x ∈ K \ Γ, where L denotes the orbital derivative,
4. K = {(t, x) ∈ B |W (t, x) ≤ R} for an R ∈ R

+.
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Then each set Ωr := {(t, x) ∈ B | W (t, x) = r} with 0 < r ≤ R is a non-
characteristic hypersurface.

Now we prove the existence theorem of the function V . The proof is similar to
the autonomous case, cf. [5, Theorem 2.38], and follows the ideas of [2, Theorem V
2.9].

Theorem 2.4 (Existence of V ). Let ẋ = f(t, x), f ∈ Cσ(S1
T × R

n,Rn), σ ≥ 1.
Let Γ = S1

T × {0} be an exponentially asymptotically stable solution and let Ω be a
non-characteristic hypersurface.

Then for all c1 ∈ R
+ and c2 ∈ R there is a function V ∈ Cσ(A(Γ) \ Γ,R)

satisfying

LV (t, x) = −c1 for all (t, x) ∈ A(Γ) \ Γ and

V (t, x) = c2 for all (t, x) ∈ Ω.

Proof. We first show that a function θ ∈ Cσ(A(Γ) \ Γ,R) satisfying

Sτ (t, x) ∈ Ω ⇔ τ = θ(t, x) (7)

exists and satisfies θ′(t, x) = −1. We define θ implicitly by h(Sθ(t,x)(t, x)) = 0,
where h is the function defining the non-characteristic hypersurface, cf. Definition
2.2. By definition of a non-characteristic hypersurface, for a given (t, x) ∈ A(Γ) \Γ,
there exists a θ ∈ R such that Sθ(t, x) ∈ Ω and thus h(Sθ(t, x)) = 0 holds. We show
that θ is unique and, hence, the function θ(t, x) is well-defined: Indeed, assume
that h(Sθ(t, x)) = h(Sθ+τ∗(t, x)) = 0 for θ ∈ R and τ∗ > 0 which is assumed to be
minimal with this property. Since Lh(Sθ(t, x)) < 0, we have h(Sθ+τ(t, x)) < 0 for
τ ∈ (0, τ∗), which contradicts Lh(Sθ+τ∗(t, x)) < 0. Hence, the function θ(t, x) is
well-defined.

We show that θ ∈ Cσ(A(Γ) \ Γ,R) using the implicit function theorem. The
function θ is the solution τ of

F ((t, x), τ) := h(Sτ (t, x)) = 0.

Let ((t, x), τ) be a point satisfying Sτ (t, x) ∈ Ω, i.e. h(Sτ (t, x)) = 0. Then
∂F
∂τ ((t, x), τ) = Lh(Sτ (t, x)) < 0. Since Sτ (t, x) is a Cσ function with respect
to (t, x) and τ , θ ∈ Cσ follows with the implicit function theorem.

By definition θ(Sτ (t, x)) = θ(t, x) − τ . Thus, Lθ(t, x) = d
dτ θ(Sτ (t, x))

∣∣
τ=0

= −1.

Define V (t, x) := c1 θ(t, x) + c2. The function V is Cσ, satisfies LV (t, x) = −c1
and V (t, x) = c2 for (t, x) ∈ Ω.

We have also some information about the smoothness of level sets of Lyapunov
functions in general, cf. [5, Corollary 2.43]. This gives the following proposition for
the Lyapunov function V in particular.

Proposition 2.5. Let ẋ = f(t, x), f ∈ Cσ(S1
T ×R

n,Rn), σ ≥ 1. Let Γ = S1
T ×{0}

be an exponentially asymptotically stable solution. Let V be the Lyapunov function
of Theorem 2.4, and, moreover, let f be bounded in A(Γ). Then for all r ∈ R

the set {(t, x) ∈ A(Γ) \ Γ | V (t, x) = r} is compact. Moreover, there is a Cσ-

diffeomorphism φ ∈ Cσ(T̃ , Nr), where T̃ = {(t, x) ∈ S1
T × R

n | ‖x‖ = 1} and
Nr = {(t, x) ∈ A(Γ) \ Γ | V (t, x) = r}.

3. Meshless Reconstruction. In this section we will describe the general approx-
imate reconstruction of multivariate functions, which are periodic in one variable,
i.e. which are of the form g : O → R with O ⊆ S1

T × R
n, from discrete data sets.

The main application will later be the reconstruction of the Lyapunov function V ,
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cf. Theorem 2.4. We restrict ourselves to the case T = 2π and denote by S1 = S1
2π

the circle of circumference 2π or radius 1.

3.1. Positive Definite Functions and Fourier Transforms. In this section we
will define a reproducing kernel Hilbert space with a positive definite kernel. This
will ensure that the interpolation problem leads to a system of linear equations with
a positive definite matrix and thus has a unique solution. We take into account that
the functions are periodic with respect to t.

Definition 3.1. A function Φ : S1 × R
n → R, periodic in t, is called positive

definite if for all choices of pairwise distinct points (tj , xj) ∈ S1 × R
n, 1 ≤ j ≤ N ,

and all α = (α1, . . . , αN )T ∈ R
N \ {0}, we have

N∑

j,k=1

αjαkΦ(tj − tk, xj − xk) > 0. (8)

Positive definite functions are often characterised using Fourier transform. Since
we are here dealing with functions, which are periodic in their t argument, the
appropriate form of the Fourier transform of a function f : S1 ×R

n → R is defined
by

f̂ℓ(ω) := (2π)−(n+1)

∫ 2π

0

∫

Rn

Φ(t, x)e−ixT ωe−iℓt dx dt. (9)

The inverse Fourier transform is then given by

f(t, x) =
∑

ℓ∈Z

∫

Rn

f̂ℓ(ω)ei(ℓt+xT ω) dω. (10)

The following characterisation has been proven in [7, Lemma 3.7].

Lemma 3.2. Let the kernel Φ : S1 × R
n → R have a pointwise representation of

the form (10) with positive Fourier coefficients Φ̂ℓ(ω) for all ℓ ∈ Z and all ω ∈ R
n.

Then, Φ : S1 × R
n → R is positive definite.

As an example, in [7] it was shown that a t-periodic positive definite kernel can
be constructed from a positive definite function Ψ: R

n+1 → R by making it periodic
in the first argument:

Φ(t, x) =
∑

k∈Z

Ψ(t+ 2πk, x). (11)

Note that this sum is finite if Ψ has compact support.
The associated reproducing kernel Hilbert space for a kernel Φ(t, x) with positive

Fourier coefficients Φ̂ℓ(ω) can be defined by

NΦ(S1 × R
n) :=

{
g :

∑

ℓ∈Z

∫

Rn

|ĝℓ(ω)|2

Φ̂ℓ(ω)
dω <∞

}
.

The space is a Hilbert space with the inner product

(g, h)NΦ
:=

∑

ℓ∈Z

∫

Rn

ĝℓ(ω)ĥℓ(ω)

Φ̂ℓ(ω)
dω.

Now, suppose we are given a kernel possessing Fourier coefficients Φ̂ℓ(ω) behaving
like

c1(1 + ℓ2 + ‖ω‖2)−τ ≤ Φ̂ℓ(ω) ≤ c2(1 + ℓ2 + ‖ω‖2)−τ (12)

with 0 < c1 ≤ c2. Then, according to [7, Lemma 3.5], see also [7, Section 3.3],
the associated function space NΦ(S1 ×R

n) is norm equivalent to the Sobolev space
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W̃ τ
2 (S1 × R

n) of functions which are periodic in t; for the definition of this space
see [7, Section 3.1].

Typical kernels satisfying (12) are Wendland’s compactly supported radial basis
functions Ψ(x̃) = ψl,k(‖x̃‖), where k ∈ N is the smoothness index of the compactly
supported Wendland function and l = ⌊n+1

2 ⌋ + k + 1, x̃ = (t, x) ∈ R × R
n. Then

(12) holds for the kernel (11) with τ = k + n/2 + 1.
Finally, we will often assume that our target function V is not defined on all of

S1 × R
n but only on a subset O. We assume that the open set O ⊆ S1 × R

n has a
bounded CK boundary, where K ∈ N and 0 ≤ τ ≤ K. By [7, Theorem 3.12] there

exists a bounded extension operator from W̃ τ
2 (O) to W̃ τ

2 (S1 × R
n).

3.2. Generalized Interpolation. To approximate the Lyapunov function V of
Theorem 2.4 we choose collocation points x̃j := (tj , xj) ∈ O ⊆ A(Γ) \ Γ, 1 ≤ j ≤ N
and x̃j := (tj , xj) ∈ Ω, N + 1 ≤ j ≤ N +M to enforce the collocation conditions

LsV (tj , xj) = −c1 1 ≤ j ≤ N,

sV (tj , xj) = c2 N + 1 ≤ j ≤ N +M.

The approach to solve this problem is as follows and works for arbitrary linearly
independent functionals over reproducing kernel Hilbert spaces.

Theorem 3.3 ([11, Theorem 16.1]). Suppose NΦ is a reproducing kernel Hilbert
space with reproducing kernel Φ. Suppose further that there are linearly independent
linear functionals λ1, . . . , λN ∈ N ∗

Φ. Then, to every V ∈ NΦ, there exists one and
only one norm-minimal generalized interpolant sV , i.e. sV is the unique solution to

min{‖s‖NΦ
: s ∈ NΦ with λj(s) = λj(V )}.

Moreover, sV has the representation

sV (x̃) =

N∑

j=1

αjλ
ỹ
j Φ(x̃− ỹ), (13)

where the coefficients are determined by solving the linear system λi(sV ) = λi(V ),
1 ≤ i ≤ N .

In order to solve our boundary value problem we have two sets of function-
als. Using the notation x̃ = (t, x) ∈ S1 × R

n, we choose two sets of points,
X1 := {x̃1, . . . , x̃N} ⊆ O and X2 := {x̃N+1, . . . , x̃N+M} ⊆ Ω ⊆ ∂O and define
the functionals by

λj =

{
δx̃j

◦ L, for 1 ≤ j ≤ N,
δx̃j

for N + 1 ≤ j ≤ N +M.
(14)

This leads to a generalized interpolant of the form

sV (x̃) =
N∑

k=1

αk(δx̃k
◦ L)ỹΦ(x̃− ỹ) +

N+M∑

k=N+1

αkΦ(x̃− x̃k).

The coefficient vector α ∈ R
N+M is determined by the interpolation conditions

(δx̃j
◦ L)(sV ) = (δx̃j

◦ L)(V ) = −c1, 1 ≤ j ≤ N (15)

sV (x̃j) = V (x̃j) = c2, N + 1 ≤ j ≤ N +M. (16)

As in the case of one operator, it is easy to show that the functionals λj , this
time defined by (14), are linearly independent, for a similar proof cf. [6, Proposition
3.3]; note that L, being the orbital derivative of a time-periodic ODE, does not have
any singular points.
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Proposition 3.4. Suppose Φ : S1×R
n → R is a reproducing kernel of W̃ τ

2 (S1×R
n)

with τ > m + (n + 1)/2. Let L be a linear differential operator of degree m. Let
X1 = {x̃1, . . . , x̃N} ⊆ O and X2 = {x̃N+1, . . . , x̃N+M} ⊆ ∂O be two sets of pairwise
distinct points. Then, the functionals Λ = {λ1, . . . , λN+M} with λj = δx̃j

◦ L,
1 ≤ j ≤ N and λj = δx̃j

for N + 1 ≤ j ≤ N + M are linearly independent over

W̃ τ
2 (S1 × R

n).

3.3. Error Estimates. To derive error estimates, we have to make certain further
assumptions on the boundary. We will assume that the bounded regionO ⊆ S1×R

n

has a Ck,s-boundary ∂O, where τ = k+s with k ∈ N0 and s ∈ [0, 1). This means in
particular, that ∂O is a n dimensional Ck,s-sub-manifold of S1 ×R

n. It also means
that O is Lipschitz continuous and satisfies the cone condition. For details, we refer
the reader to [12].

In the following it is sufficient to identify S1 with the interval (0, 2π) and to
consider spaces of functions which are not necessarily periodic. We will represent
the boundary ∂O by a finite atlas consisting of Ck,s-diffeomorphisms. To be more
precise, we assume that ∂O ⊆ ∪K

j=1Vj , where Vj ⊆ S1×R
n are open sets. Moreover,

the sets Vj are images of Ck,s-diffeomorphism

ϕj : B → Vj ∩ ∂O,

where B = B(0, 1) denotes the unit ball in R
n.

Finally, suppose {wj} is a partition of unity with respect to {Vj}. Then, the
Sobolev norms on ∂O can be defined via

‖u‖p
W µ

p (∂O)
=

K∑

j=1

‖(uwj) ◦ ϕj‖
p
W µ

p (B)
.

It is well known that this norm is independent of the chosen atlas {Vj , ϕj}. Further-
more, the trace theorem (see [12, Theorem 8.7]) guarantees under these conditions
that the restriction of u ∈ W τ

2 (O) with τ = k + s to ∂O is well defined, belongs to

W
τ−1/2
2 (∂O), and satisfies ‖u‖

W
τ−1/2

2
(∂O)

≤ ‖u‖W τ
2

(O).

To measure the quality of our approximants we will use mesh norms. The quan-
tity hX1,O = supx̃∈O minx̃j∈X1

‖x̃− x̃j‖ measures how well X1 is distributed over O.
However, since O is periodic in the t variable, it is more natural to use the measure

h̃X1,O := sup
x̃∈O

min
x̃j∈X1

‖x̃− x̃j‖
c

where the “cylinder”-norm is defined by ‖x̃‖c = ((t mod 2π)2 + ‖x‖2)1/2 and t mod
2π ∈ [−π, π).

For the boundary part we are using the fixed atlas {Vj, ϕj} and define the mesh
norm now as

hX2,∂O := max
1≤j≤K

hTj ,B

with Tj = ϕ−1
j (X2 ∩ Vj) ⊆ B. Then, we have the following result, which holds for

arbitrary operators L of order m.

Theorem 3.5. Suppose Φ is the reproducing kernel of W̃ τ
2 (S1 × R

n) with τ >
m+ (n+ 1)/2.

Suppose further that O ⊆ S1 × R
n has a CK boundary with K ≥ τ . Let L be

a linear differential operator of order m, i.e. Lu(t, x) =
∑

|α|≤m cα(t, x)Dαu(t, x)

with coefficients cα in W̃ k−m+1
∞ (O) and 0 ≤ m ≤ ⌈τ − (n + 1)(1/2 − 1/p)+⌉ − 1.
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Finally, let sV be the generalized interpolant to V ∈ W̃ τ
2 (O). If the data sets have

sufficiently small mesh norms then for 1 ≤ p ≤ ∞, the error estimates

‖LV − LsV ‖Lp(O) ≤ Ch̃
τ−m−(n+1)(1/2−1/p)+
X1,O ‖V ‖

W̃ τ
2

(O)
(17)

‖V − sV ‖Lp(∂O) ≤ Ch
τ−1/2−n(1/2−1/p)+
X2,∂O ‖V ‖

W̃ τ
2

(O) (18)

are satisfied.

Proof. Estimate (17) has been proven in [7, Theorem 3.19] for m = 1, p = ∞ and
no boundary points. Its proof generalizes to our situation and general p and m as
it has been done for the non-periodic case in [6].

The second estimate is proven as in the non-periodic case in [6, Theorem 3.10].

Since the functions vj = ((V − sV )wj) ◦ ϕj belong to W
τ−1/2
2 (B) and vanish on Tj

we can estimate

‖V − sV ‖p
Lp(∂O) =

K∑

j=1

‖vj‖
p
Lp(B) ≤ C

K∑

j=1

h
p(τ−1/2−n(1/2−1/p)+)
Tj ,B ‖vj‖

p

W
τ−1/2

2
(B)

≤ Ch
p(τ−1/2−n(1/2−1/p)+)
X2,∂O ‖V − sV ‖p

W
τ−1/2

2
(∂O)

≤ Ch
p(τ−1/2−n(1/2−1/p)+)
X2,∂O ‖V − sV ‖p

W τ
2

(O)

≤ Ch
p(τ−1/2−n(1/2−1/p)+)
X2,∂O ‖V − sV ‖p

W̃ τ
2

(O)

for 1 ≤ p <∞, where, in the first step, we used a result on Sobolev functions having
lots of zeros (see [1, 9, 10]) in the formulation of [7, Proposition 3.15]. The case
p = ∞ is treated in the same way. Finally, since sV is a norm-minimal interpolant,
the norm in the last expression can again be bounded by the norm of V .

The proof of Theorem 3.5 shows, that the following alternative version of Theo-
rem 3.5 is also true.

Corollary 3.6. Suppose Ω ⊆ ∂O is a part of the boundary satisfying Ω =
⋃L

j=1(Vj∩

∂O).This means, that the first L charts {Vj , ϕj}L
j=1 are exclusive for Ω, or that, for

1 ≤ j ≤ L, Vj ∩ (∂O \ Ω) = ∅. Suppose further, that the boundary collocation
points X2 are chosen only on Ω, while the interior points are still chosen in O, then
estimate (17) remains valid and (18) becomes

‖V − sV ‖Lp(Ω) ≤ Ch
τ−1/2−n(1/2−1/p)+
X2,Ω ‖V ‖

W̃ τ
2

(O)
, (19)

where hX2,Ω = max1≤j≤L hTj ,B with Tj defined as before.

For the orbital derivative we have m = 1 and hence the following result. Note
that the set O in the corollary has a Cσ boundary by Proposition 2.5.

Corollary 3.7. Assume that τ > (n + 1)/2 + 1. Let σ := ⌈τ⌉. Consider the
dynamical system defined by the periodic ordinary differential equation ẋ = f(t, x),
where f ∈ Cσ(S1 × R

n,Rn). Let x(t) = 0 ∈ R
n be an exponentially asymptotically

periodic solution defining the periodic orbit Γ. Denote by V ∈ Cσ(A(Γ) \ Γ,R) the
Lyapunov function of Theorem 2.4. Suppose further that Φ : S1 × R

n → R is a
positive definite kernel satisfying (12).

Let Ω = {(t, x) ∈ A(Γ) \ Γ} | h(t, x) = 0} be a non-characteristic hypersurface
and set O = {(t, x) ∈ A(Γ) \ Γ} | V (t, x) ≤ r and h(t, x) ≥ 0}, where r > 0 is large
enough such that {(t, x) ∈ A(Γ) \ Γ} | V (t, x) = r} ∩ Ω = ∅.
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Then, the reconstruction sV of the Lyapunov function V with respect to the op-
erator Lu(t, x) = ∂tu(t, x)+ 〈∇xu(t, x), f(t, x)〉 and sets X1 ⊆ O and X2 ⊆ Ω ⊆ ∂O
satisfies

‖LV − LsV ‖L∞(O) ≤ Ch̃
τ−1−(n+1)/2
X1,O ‖V ‖

W̃ τ
2

(O) (20)

‖V − sV ‖L∞(Ω) ≤ Ch
τ−(n+1)/2
X2,Ω ‖V ‖

W̃ τ
2

(O)
(21)

In order to apply Theorem 2.1 we need in addition to the negative orbital deriv-
ative of the Lyapunov function a sublevel set. The next theorem ensures that each

compact set K̃ in the basin of attraction can be covered by a sublevel set of sV .

Theorem 3.8. Let K̃ be a compact set with Γ ⊆
◦

K̃ ⊆ K̃ ⊆ A(Γ).
Then there are r, h∗1, h

∗
2 > 0 such that for all approximations sV of V as in

Corollary 3.7 where O = {(t, x) ∈ A(Γ) \ Γ | V (t, x) ≤ r and h(t, x) ≥ 0}, h̃X1,O ≤

h∗1 and hX2,Ω ≤ h∗2, there is a ρ ∈ R with K̃ ⊆ {(t, x) ∈ O | sV (t, x) ≤ ρ}.

The proof is similar to [5, Theorem 5.3]. We can use (21) near Γ and then the
estimate (20) along solutions.

x
K2 K1 0 1 2

t
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3

4

5

6

x
K1.5 K1.0 K0.5 0 0.5 1.0

t
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2

3

4

5

6

Figure 1. Left: Sublevel set E (thin black) of the local Lyapunov
function W (t, x) = 1

2x
2, the grids X1 (+) and X2 (◦) for the cal-

culated Lyapunov function sV , the level set LsV (t, x) = 0 (grey)
determining the sign of LsV and a sublevel set of sV (thick black)
which is a subset of the basin of attraction. Right: different sub-
sets of the basin of attraction (dotted): local Lyapunov function
(thin), approximation of a PDE with boundary conditions (this
paper, thick black) and without boundary conditions ([7], grey).

3.4. Example. As an example we consider the system [7, Section 4.1]

ẋ = x(λ sin t− 1) + x2 (22)

with λ = 1/2. The function x(t) = 0 is a solution and W (t, x) = 1
2x

2 is the
Lyapunov function for the system with λ = 0, linearized at 0, i.e. ẋ = −x. Hence,
the set E = {(t, x) | W (t, x) ≤ 0.12} is a subset of the basin of attraction, cf. [7,
Section 4.1] and Figure 1, left.
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Now we choose two grids of N = 390 and M = 52 points, where X2 ⊆ ∂E =: Ω,
and approximate the solution V (t, x) of LV (t, x) = −1 and V (t, x) = 0 on Ω by
sV using the kernel given by Wendland’s function ψ(r) = ψ5,3(r/4.5). The sign of
LsV (t, x) and the sublevel setK = {(t, x) | sV (t, x) ≤ 0.68} satisfying the conditions
of Theorem 2.1 is shown in Figure 1, left (thick black). In Figure 1, right we compare
this subset of the basin of attraction (thick black) with the subset obtained in [7]
using a PDE without boundary conditions (grey) with 442 collocation points as well
as the boundary of the basin of attraction, an unstable periodic orbit (dotted).
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