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Abstract. We consider a three-point boundary value problem for the beam
equation. Some a priori estimates to the positive solutions for the boundary
value problem are obtained. Sufficient conditions for the existence and nonex-
istence of positive solutions for the boundary value problem are established.
The results are illustrated with an example.

1. Introduction. Fourth order ordinary differential equations are models for bend-
ing or deformation of elastic beams, and therefore have important applications in
engineering and physical sciences. Two-point and multi-point boundary value prob-
lems for fourth order ordinary differential equations have attracted a lot of attention
recently. Many authors have studied the beam equation under various boundary
conditions and by different approaches. In 2003, Ma [10] considered the fourth order
right focal two point boundary value problem

u′′′′(t) = λf(t, u(t), u′(t)), 0 < t < 1, (1)

u(0) = u′(0) = u′′(1) = u′′′(1) = 0. (2)

In 2006, Anderson and Avery [1] considered the fourth order right focal four-point
boundary value problem

u′′′′(t) + f(u(t)) = 0, 0 < t < 1,

u(0) = u′(q) = u′′(r) = u′′′(1) = 0,

and in 2004, Kosmotov [8] studied the existence of countably many solutions for
the fourth order two-point conjugate boundary value problem

u′′′′(t) = g(t)f(u(t)), 0 < t < 1, (3)

u(0) = u′(0) = u′(1) = u(1) = 0. (4)
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In addition, in 2003, Graef et al. [4] considered positive solutions for the fourth
order nonlocal boundary value problem

u′′′′(t) = g(t)f(u(t)), 0 < t < 1,

u(0) = u′(1) = u′′(0) = u′′(p) − u′′(1) = 0,

and in 2004, Henderson and Ma [7] studied some uniqueness questions for fourth
order nonlocal boundary value problems. For some other results on boundary-value
problems for the beam equation, we refer the reader to the papers of Davis and
Henderson [2], Eloe, Henderson, and Kosmatov [3], Graef and Yang [5], Gupta [6],
Ma and Wang [11], and Yang [12].

Motivated by these works, in this paper we consider the fourth order beam equa-
tion

u′′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (5)

together with the boundary conditions

u(0) = u′(0) = u′′(β) = u′′(1) = 0. (6)

Throughout this paper, we assume that

(H) β ∈ [2/3, 1) is a constant, f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are
continuous functions, and g(t) 6≡ 0 on [0, 1].

By a positive solution of (5)–(6), we mean a solution u(t) such that u(t) > 0 for
0 < t < 1. Our motivation is actually two fold. First, the boundary conditions (6)
are related to (2). To see this, note that if u ∈ C4[0, 1] satisfies (6), then by the
Mean Value Theorem there exists α ∈ (β, 1) such that u′′′(α) = 0. If we let β → 1−,
then α → 1−, and the boundary conditions (6) “tend to” (2). In this sense, (2) is
the limiting case of (6).

Secondly, the boundary conditions (6) are also related to (4). If u ∈ C4[0, 1]
satisfies (4), then u(0) = u(1) = 0 and u′(0) = u′(1) = 0. Since u(0) = u(1) = 0,
there exists γ ∈ (0, 1) such that u′(γ) = 0. Since u′(0) = u′(γ) = u′(1) = 0, there
exist β ∈ (0, γ) and α ∈ (γ, 1) such that u′′(β) = u′′(α) = 0. Therefore, we have
u(0) = u′(0) = u′′(β) = u′′(α) = 0, where β < α. Hence, to fully understand
boundary conditions (4), we need to study (6).

This paper is organized as follows. In Section 2, we give the Green’s function
for the problem (5)–(6), state the Krasnosel’skii fixed point theorem, and fix some
notations. In Section 3, we present some a priori estimates to positive solutions to
the problem (5)–(6). In Section 4, we establish some existence and nonexistence
results for positive solutions to the problem (5)–(6), and we give an example to
illustrate our results.

2. Preliminaries. The Green’s function G : [0, 1]× [0, 1] → [0,∞) for the problem
consisting of the equation

u′′′′(t) = 0
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and the boundary conditions (6) is

G(t, s) =























































(1 − s)(3β − t)t2

6(1 − β)
, if s ≥ β and s ≥ t,

(3t − s)s2

6
, if s ≤ β and s ≤ t,

(3s − t)t2

6
, if t ≤ s ≤ β,

(1 − s)t2(3β − t)

6(1 − β)
+

(t − s)3

6
, if β ≤ s ≤ t.

Then problem (5)–(6) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1.

It is easy to verify that G is a continuous function and that G(t, s) > 0 if t, s ∈ (0, 1).
We will need the following fixed point theorem, which is due to Krasnosel’skii [9],
to prove some of our results.

Theorem 2.1. Let (X, ‖ · ‖) be Banach space over the reals, and let P ⊂ X be a
cone in X. Let H1 and H2 be real numbers such that H2 > H1 > 0, and let

Ωi = {v ∈ X | ‖v‖ < Hi}, i = 1, 2.

Let L : P ∩ (Ω2 − Ω1) → P be a completely continuous operator such that, either

(K1) ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω2, or
(K2) ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ (Ω2 − Ω1).

For the rest of this paper, we let X = C[0, 1] with the norm

‖v‖ = max
t∈[0,1]

|v(t)| for all v ∈ X.

Clearly, X is a Banach space. We define Y = {v ∈ X | v(t) ≥ 0 for 0 ≤ t ≤ 1}, and
define the operator T : Y → X by

(Tu)(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1.

It is clear that if (H) holds, then T : Y → Y is a completely continuous operator.
We also define the constants

F0 = lim sup
x→0+

f(x)

x
, f0 = lim inf

x→0+

f(x)

x
,

F∞ = lim sup
x→+∞

f(x)

x
, f∞ = lim inf

x→+∞

f(x)

x
.

These constants associated with the function f will be used in Section 4.

3. Estimates for Positive Solutions. In this section, we shall give some esti-
mates for positive solutions of the problem (5)–(6). To this purpose, we define the
function a : [0, 1] → [0, 1] by

a(t) = (3t2 − t3)/2.
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Lemma 3.1. If u ∈ C4[0, 1] satisfies the boundary conditions (6), and

u′′′′(t) ≥ 0 for 0 ≤ t ≤ 1, (7)

then u(t) ≥ 0 for 0 ≤ t ≤ 1.

Proof. The lemma follows easily from the fact that G(t, s) ≥ 0 for t, s ∈ [0, 1].

Lemma 3.2. tG(1, s) ≥ G(t, s) for t, s ∈ [0, 1].

Proof. If s ≥ β and s ≥ t, then

tG(1, s) − G(t, s) =
t(1 − s)[(1 − s)2(1 − β) + (1 − t)(3β − 1 − t)]

6(1 − β)
≥ 0.

If s ≤ t and s ≤ β, then

tG(1, s) − G(t, s) =
(1 − t)s3

6
≥ 0.

If t ≤ s ≤ β, then

tG(1, s) − G(t, s) =
t((2s − t)(s − t) + s2(1 − s))

6
≥ 0.

If β ≤ s ≤ t, then

tG(1, s) − G(t, s) =
(1 − t)(−βt2 + t2s + 2βt − 2st + s3 − s3β)

6(1 − β)

=
(1 − t)[(s − β)(1 − t)2 + β(1 − s3) − s + s3]

6(1 − β)

≥
(1 − t)[(s − β)(1 − t)2 + (2/3)(1 − s3) − s + s3]

6(1 − β)

≥ 0.

In the last inequality, we used the fact that (2/3)(1−s3)−s+s3 ≥ 0, for 2/3 ≤ s ≤ 1.
The proof is complete.

Lemma 3.3. If u′′′′(t) ≥ 0 on [0, 1] and u(t) satisfies the boundary conditions (6),
then

u(t) ≤ tu(1) for 0 ≤ t ≤ 1. (8)

Proof. If u′′′′(t) ≥ 0 on [0, 1] and u(t) satisfies the boundary conditions (6), then

u(t) =

∫ 1

0

G(t, s)u′′′′(s) ds ≤ t

∫ 1

0

G(1, s)u′′′′(s) ds = tu(1), 0 ≤ t ≤ 1,

by Lemma 3.2. This proves the lemma.

Lemma 3.4. If u′′′′(t) ≥ 0 on [0, 1] and u(t) satisfies the boundary conditions (6),
then

u(t) ≥ a(t)u(1) for 0 ≤ t ≤ 1. (9)

Proof. Let h(t) = u(t) − a(t)u(1), 0 ≤ t ≤ 1. Then,

h′(t) = u′(t) − u(1)(6t − 3t2)/2,

h′′(t) = u′′(t) − 3(1 − t)u(1),

h′′′′(t) = u′′′′(t) ≥ 0.

From the above equations we see that h(0) = h′(0) = h′′(1) = h(1) = 0. By the
Mean Value Theorem, h(0) = h(1) = 0 implies there exists r ∈ (0, 1) such that
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h′(r) = 0. Since h′(0) = h′(r) = 0, there exists s ∈ (0, r) such that h′′(s) = 0. Note
that h′′ is convex. Therefore, we have h′′(t) ≥ 0 on [0, s] and h′′(t) ≤ 0 on [s, 1].
Since h′(0) = 0, we have h′(t) ≥ 0 on [0, s]. Since h(0) = 0, we have h(t) ≥ 0 on
[0, s]. Because h is concave on [s, 1] and h(s) ≥ 0 = h(1), we have h(t) ≥ 0 on [s, 1].
Thus, h(t) ≥ 0 on [0, 1], and this completes the proof of the lemma.

Theorem 3.5. Suppose that (H) holds. If u(t) is a nonnegative solution to the
problem (5)–(6), then u(t) satisfies (8) and (9).

Proof. If u(t) is a nonnegative solution to the problem (5)–(6), then u(t) satisfies
the boundary conditions (6), and

u′′′′(t) = g(t)f(u(t)) ≥ 0, 0 ≤ t ≤ 1.

The conclusion follows directly from Lemmas 3.3 and 3.4.

4. Existence and Nonexistence Results. First, we define some important con-
stants:

A =

∫ 1

0

G(1, s)g(s)a(s) ds, B =

∫ 1

0

G(1, s)g(s)s ds.

We also define

P =
{

v ∈ X : v(1) ≥ 0, a(t)v(1) ≤ v(t) ≤ tv(1) on [0, 1]
}

.

Clearly P is a positive cone in X . It is obvious that, if u ∈ P , then u(1) = ‖u‖. We
see from Theorem 3.5 that, if u(t) is a nonnegative solution to the problem (5)–(6),
then u ∈ P . In a similar fashion to Theorem 3.5, we can show that T (P ) ⊂ P . To
find a positive solution to the problem (5)–(6), we need only to find a fixed point u
of T such that u ∈ P and u(1) > 0.

The next two theorems provide sufficient conditions for the existence of at least
one positive solution for the problem (5)–(6).

Theorem 4.1. Suppose that (H) holds. If BF0 < 1 < Af∞, then the problem
(5)–(6) has at least one positive solution.

Proof. First, we choose ε > 0 such that (F0 + ε)B ≤ 1. By the definition of F0,
there exists H1 > 0 such that f(x) ≤ (F0 +ε)x for 0 < x ≤ H1. Now for each u ∈ P
with ‖u‖ = H1, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤

∫ 1

0

G(1, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖

∫ 1

0

G(1, s)g(s) s ds

= (F0 + ε)‖u‖B ≤ ‖u‖,

which means ‖Tu‖ ≤ ‖u‖. Thus, if we let Ω1 = {u ∈ X | ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose δ > 0 and τ ∈ (0, 1/4) such that

(f∞ − δ)

∫ 1

τ

G(1, s)g(s)a(s) ds ≥ 1.
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There exists H3 > 2H1 such that f(x) ≥ (f∞ − δ)x for x ≥ H3. Let H2 = H3/τ2.
If u ∈ P such that ‖u‖ = H2, then for each t ∈ [τ, 1], we have

u(t) ≥ H2a(t) ≥ H2t
2 ≥ H2τ

2 ≥ H3.

Therefore, for each u ∈ P with ‖u‖ = H2, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

τ

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

τ

G(1, s)g(s)(f∞ − δ)u(s) ds

≥

∫ 1

τ

G(1, s)g(s)a(s) ds · (f∞ − δ)‖u‖ ≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. Thus, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then Ω1 ⊂ Ω2,
and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Now condition (K1) of Theorem 2.1 is satisfied, and so there exists a fixed point of
T in P ∩ (Ω2 − Ω1). The proof is now complete.

The following theorem is a companion result to Theorem 4.1. Its proof is very
similar to the proof of Theorem 4.1 and is therefore omitted.

Theorem 4.2. Suppose that (H) holds. If BF∞ < 1 < Af0, then the problem
(5)–(6) has at least one positive solution.

The next two theorems provide sufficient conditions for the nonexistence of pos-
itive solutions to the problem (5)–(6).

Theorem 4.3. Suppose that (H) holds. If Bf(x) < x for all x > 0, then the
problem (5)–(6) has no positive solutions.

Proof. Assume to the contrary that u(t) is a positive solution of the problem (5)–(6).
Then, u ∈ P , u(t) > 0 for 0 < t ≤ 1, and

u(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(1, s)g(s)u(s) ds

≤ B−1u(1)

∫ 1

0

G(1, s)g(s)s ds

= B−1Bu(1) = u(1),

which is a contradiction. The proof is complete.

The proof of the following theorem is similar to the one above.

Theorem 4.4. Suppose that (H) holds. If Af(x) > x for all x > 0, then the
problem (5)–(6) has no positive solutions.

We conclude this paper with an example.



FOURTH ORDER THREE POINT BVP 275

Example 4.5. Consider the boundary value problem

u′′′′(t) = λ(t + 2t2)u(t)(1 + 3u(t))/(1 + u(t)), 0 ≤ t ≤ 1, (10)

u(0) = u′(0) = u′′(3/4) = u′′(1) = 0, (11)

where λ > 0 is a parameter. In this example, β = 3/4, g(t) = t + 2t2, and
f(u) = λu(1 + 3u)/(1+ u). It is easy to see that f0 = F0 = λ, f∞ = F∞ = 3λ, and

λx < f(x) < 3λx for x > 0.

Calculations indicate that A = 586631/7741440 and B = 14699/161280. By Theo-
rem 4.1, if

4.398813 ≈ 1/(3A) < λ < 1/B ≈ 10.972174,

then the problem (10)–(11) has at least one positive solution. From Theorems 4.3
and 4.4, we see that, if

λ < 1/(3B) ≈ 3.657391 or λ > 1/A ≈ 13.196439,

then the problem (10)–(11) has no positive solutions. This example shows that our
existence and nonexistence results are quite sharp indeed.
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