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Abstract. In this paper, we present a framework of 4D variational data as-
similation (4D-Var) in Hilbert spaces and discuss Marchuk-Strang operator
splitting methods for 4D-Var. Convergence analysis of the operator splitting
methods is made.

1. Introduction. Variational data assimilation has important applications in at-
mosphere models and chemical transport models [1, 9, 13]. Data assimilation sys-
tems utilize two sources of data: observations and a recent forecast valid at a known
time. For many practical problems, observation sets are distributed in 3D space plus
time, corresponding to 4D data assimilation (4D-Var). 4D-Var is a method of es-
timating a set of parameters by optimizing the fit between the solution of a model
and a set of observations which the model is meant to predict. The unknown model
parameters may be the model’s initial conditions. Determining the model param-
eters is very important and complex and has become a science in itself. 4D-Var is
a process where a state forecast and observations are combined to produce a best
(optimal) estimate or an analysis of the state [9].

4D-Var is typically an optimal control problem and the parameters are often
constrained by evolution differential operators. In the paper, we will restrict a
parameter in the 4D-Var to representing the initial condition of a nonlinear evolution
differential operator. Hence the 4D-Var problem reads as follows: “what initial
condition will fit the model to best predict the given observations?” To solve the
4D-Var, one often needs to compute the gradient and even Hessian of a functional
which relates the parameter and the model solution. For this purpose, a first order
adjoint model and a second order adjoint model are needed to solve.

In many 4D-Var problems, the differential operators in forward model , adjoint
model and tangent linear model, have complicated structures and consist of different
parts (e.g., advection operators, diffusion operators and reaction operators), and
the different parts may be solved by different numerical schemes. Splitting methods
are often used in solving these complicated models. The basic idea behind operator
splitting is to break a complicated problem into smaller or simpler subproblems such
that different parts can be solved efficiently with appropriate numerical schemes.
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In this paper, we present a 4D-Var in functional setting and discuss the symmetric
operator splitting methods in the 4D-Var problem.

The paper is organized as follows. In Section 2, we present a framework for
functional 4D-Var in in Hilbert spaces. In section 3, we apply the Marchuk-Strang
multicomponent operator splitting to the 4D-Var and make convergence analysis
for the splitting method. In Section 4, we draw some conclusions.

2. 4D Variational Data Assimilation in Hilbert Spaces.

2.1. A functional 4D-Var. In this subsection, we present a framework for 4D-Var
in a nonlinear functional on Hilbert spaces.

Let V be Hilbert space with inner product (·, ·)V and U = {φ : [t0, T ] −→ V } be
a Hilbert space. Let uB ∈ V be the background of the initial value, i.e., the initial
guess in the assimilation procedure. Let B−1 : V → V be a covariance operator
of the estimated background error, which is linear and symmetric. Let H(t) be an
observation operator which depends on time t. We simply write H = H(t) when no
confusion occurs. Typically, H maps space U onto a proper subspace Uo of U . Let
uobs be the real observations depending on time t. Let R−1 : Uo → Uo be a linear
symmetric covariance operator accounting for observations and representativeness
errors. We define an optimization functional (or cost functional) as following:

J (u0, u) =
1

2
(u0 − uB, B−1(u0 − uB)) +

1

2
(Hu − uobs, R

−1(Hu − uobs))U0
, (1)

where u ∈ U , u0 ∈ V and

(·, ·)U0
=

∫ T

t0

(·, ·)(s)ds.

Here (·, ·) inside the integral represents the inner product of the space Uo(s) (for
fixed time s). In this paper, we will use (·, ·) to represent generic inner products
to avoid using many notations. Different spaces may have different definitions for
the (·, ·) (e.g., observations in Uo and the corresponding inner product (·, ·) means
(·, ·)Uo

), but they can be easily made out in the context. The optimization functional
J measures the difference between the model output u and the observation uobs

and the deviation of the solution from the background state uB.
In practical situations, the observation uobs is evaluated at a set of discrete

moments {tk}
N
k=0 in the time interval [t0, T ]. For these cases, the optimization

functional is rewritten as

J (u0, u) =
1

2
(u0−uB, B−1(u0−uB))+

1

2

N
∑

k=0

(Hkuk−uk
obs, R

−1
k (Hkuk−uk

obs)). (2)

Let S(t) be a nonlinear operator to represent a predefined forecast model. Ten
4D-Var reads as the minimization problem,

û0 = argmin{J (u0, u) : u(t) = S(t)u0},

where the model state u(t) is subject to the forward model equation,

u(t) = S(t)u0. (3)

Let S̄(t) be the linearization of S(t). We define a tangent linear model corresponding
to (3) as following:

δu(t) = S̄(t)δu0, (4)



396 LIJIAN JIANG AND CRAIG C. DOUGLAS

where δu(t) is the perturbation of u(t) and δu0 is the perturbation of u0. Equation
(4) demonstrates the relation between the two perturbations through the linearl-
ization S̄(t) of the forecast model S(t). Let S̄∗(t) be the adjoint of S̄(t), H̄∗(t) the
adjoint of H̄(t), and H̄(t) a linearization of H(t). Let ∇u0 be the Fréchet deriva-
tive operator (or gradient operator) with respect to u0 in the space U and ∇2

u0 the
second derivative operator with respect to u0. By the equation u(t) = S(t)u0, it
follows that

∇u0J (u0, u) = B−1(u0 − uB) +

∫ T

t0

S̄∗H̄∗R−1(Hu − uobs)(s)ds (5)

and

∇2
u0J (u0, u) = B−1 +

∫ T

t0

S̄∗H̄∗R−1H̄S̄ds. (6)

To numerically approximate (1), one needs to discretize time. Because the opti-
mization functional is the same as in (2) in most practical problems and the time
discretization of (1) is similar to (2), we focus on discussing the optimization func-
tional defined in (2) instead of the time discretization of (1).

In the rest of the paper, we will use the optimization functional in (1) to discuss
the continuous time 4D-Var and use the functional in (2) to discuss the numerical
4D-Var, i.e., time is discretized.

The 4D-Var defined previously is a nonlinear constrained optimization problem
and it is often hard to solve in general. Here we make two assumptions to simplify
the problem and clarify the numerical process.
Assumption 1: The forecast model S(t) can be represented as the product of in-
termediate forecast steps. Let S[t,t+τ ] be the forecast step from t to t + τ . Then
u(t + τ) = S[t,t+τ ]u(t). and for tk = t0 + kτ ,

u(tk) = S[tk−1,tk] · · ·S[t1,t2]S[t0,t1]u
0.

Assumption 1 means that the forward model is an integration of a numerical
prediction model starting with u0 as the initial value. The assumption implies the
idea of an operator splitting method.

Assumption 2: At any time, HSu0 admits a first order Taylor expansion
around uB

HSu0 = HSuB + H̄S̄(u0 − uB),

where H̄ = H̄(t) is the linearization of the observation operator H(t) and S̄ = S̄(t)
is the tangent linear model of S(t).

Assumption 2 is a tangent linear hypothesis and implies that ∇u0HS(u0) = H̄S̄.

Let S̄[tk−1,tk] = ∇uS[tk−1,tk]u|t=tk−1
, S̄[t0,tk] = Πk

i=1S̄[ti−1,ti], and H̄k = ∇uHu|t=tk
.

Consequently, it can be verified [5, 4] that

∇u0J (u0, u) = ∇u0J = B−1(u0 − uB) +
N

∑

k=0

S̄∗
[tk,t0]

H̄∗
kR−1

k (Hkuk − uk
obs) (7)

and

∇2
u0J (u0, u) = B−1 +

N
∑

k=0

S̄∗
[tk,t0]

H̄∗
kR−1

k H̄K S̄[t0,tk]. (8)
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2.2. 4D-Var Constraint Specified by A Differential Operator. For simplic-
ity of discussion, we restrict ourself to the case that the constraint u(t) = S(t)u0 is
defined by a nonlinear evolution operator A on a Hilbert space U . Then the 4D-Var
problem can be formulated as following: seek the solution φ ∈ U of







Dtφ = A(φ)
φ(t = t0) = u0

û0 = arg infu0 J (u0, φ),

(9)

where J (u0, φ) is defined in (1). Here we assume that the nonlinear evolution
equation in (9) has a unique solution.

By applying variational calculus techniques, we can show that the optimal control
problem (9) is equivalent to the optimal system as form [4] stated by























Dtφ = A(φ)
φ(t = t0) = u0

−Dtφ
∗ = (∇A(φ))∗φ∗ − H̄∗R−1(Hφ − φobs)

φ∗(t = T ) = 0
φ∗(t = t0) = B−1(u0 − uB),

(10)

where φ ∈ U and φ∗ ∈ U .

Remark 1. Let SA(t) denote an operator semigroup with generator A. By the
notation of a semigroup,

φ(t) = SA(t)u0.

Hereafter we adopt similar notations for semigroups. If A is a maximal dissipative
operator on V , the exponential formula of the nonlinear semigroup [2] is

SA(t)u0 = lim
n→∞

(1 −
t

n
A)−nu0,

where the limit is taken in strong topology sense. Further,

φ∗(t) = −

∫ T

t

S−(∇A(φ))∗(t − s)(H̄∗R−1(Hφ − φobs))(s)ds, (11)

where S−(∇A(φ))∗(t) = e−(∇A(φ))∗t because the generator −(∇A(φ))∗ is a bounded
linear operator.

We consider the forward problem from (9)
{

Dtφ = A(φ)
φ(t = t0) = u0 (12)

Define the tangent linear (perturbation) problem of (12) by the form
{

Dtδφ − (∇A(φ))δφ = 0
φ0(t = t0) = δu0 (13)

and the adjoint problem by the form
{

−Dtφ
∗ = (∇A(φ))∗φ∗ − H̄∗R−1(Hφ − φobs)

φ∗(t = T ) = 0.
(14)

We want to know how sensitive the functional J is to the perturbation δφ. Let δφJ
be the perturbation of J (u0, φ) when δφ is nonzero. Then

δφJ = −(δu0, φ∗(t = t0)). (15)
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The proof can be found in [4]. Equation (15) demonstrates the sensitivity of the
functional J (u0, φ) related to initial value u0. From the above, we see that the
solution φ∗ of the adjoint problem (14) accounts for the sensitivity of the functional
J to the initial value.

Let φ∗∗ be the solution of the second order adjoint problem by
{

−Dtφ
∗∗ = (∇A(φ))∗φ∗∗ + (∇2A(φ)δφ)∗φ∗ − ∂2

φJ (φ0, φ)δφ

φ∗∗(t = T ) = 0,
(16)

where φ∗ is the solution of the first order adjoint equation (14) and ∇2A(φ) is the
second derivative (Hessian) of A. Second order adjoint information is often used
in data assimilation while applying numerical optimization algorithms [5]. Partic-
ularly, Hessian vector products are used in the computation of Hessian singular
vectors in data assimilation [12].

3. Marchuk-Strang Operator Splitting Method in 4D-Var. This section is
devoted to realizing Assumption 1 by operator splitting techniques.

When A(φ) in (9) consists of different parts, one can use splitting methods to
solve (12) [6]. The idea of operator splitting is to break a complex problem into
some simpler subproblems such that each subproblem can be solved efficiently by
different numerical schemes. There are many operator splitting methods, here we
will discuss the 4D-Var by the most popular operator splitting method: Marchuk-
Strang symmetrical multi-component splitting [8, 11].

For any v ∈ U and any operator g on U , we define a Lie operator [6] A associated
with A by

Ag(v) = g′(v)A(v).

By the definition, Lie operator A is a linear operator on the space of operators

acting on the solution space U . Let A(φ) =
∑M

j=1 Aj(φ). Then we have

A =

M
∑

j

Aj ,

where Aj is the Lie operator associated with each operator Aj . So for the solution
φ(t) of (12),

Ag(φ(t)) = g′(φ(t))A(φ(t)) =
∂

∂t
g(φ(t)).

Let I be identity operator. Lie-Taylor series [3] implies that

φ(t + τ) = (eτAI)φ(t).

Because A(φ) =
∑M

j=1 Aj(φ), the problem (12) is split into M subproblems, i.e.,

Dtφj = Aj(φj), j = 1, · · · , M . By applying the Marchuk-Strang multi-component
splitting over the intervals [tk, tk+1], where tk+1 = tk + τ with time step τ , we have























































Dtφ1 = A1(φ1), φ1(tk) = φ′
1(tk), t ∈ [tk, tk + τ

2 ]
· · ·

DtφM−1 = AM−1(φM−1), φM−1(tk) = φM−2(tk + τ
2 ),

t ∈ [tk, tk + τ
2 ]

DtφM = AM (φM ), φM (tk) = φM−1(tk + τ
2 ), t ∈ [tk, tk + τ ]

Dtφ
′
M−1 = AM−1(φ

′
M−1), φ′

M−1(tk + τ
2 ) = φM (tk+1),

t ∈ [tk + τ
2 , tk+1]

· · ·
Dtφ

′
1 = A1(φ

′
1), φ1(tk + τ

2 ) = φ′
2(tk+1), t ∈ [tk + τ

2 , tk+1].

(17)
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Let Sj, 1
2
τ = e

1
2
τAj , SM,τ = eτAM , and φk be approximations of φ(tk), k = 1, · · · , N .

By Baker-Campbell-Hausdorf formula of Lie operator [6], it follows that

φ(tk+1) = S1, 1
2
τ · · · SM−1, 1

2
τSM,τSM−1, 1

2
τ · · · S1, 1

2
τIφ(tk) + O(τ3) (18)

and that

φk+1 = S1, 1
2
τ · · · SM−1, 1

2
τSM,τSM−1, 1

2
τ · · · S1, 1

2
τIφk. (19)

Let S[tk,tk+1] = S1, 1
2
τ · · · SM−1, 1

2
τSM,τSM−1, 1

2
τ · · · S1, 1

2
τ be the splitting procedure

over the time interval [tk, tk+1]. Then

φN = ΠN−1
k=0 S[tk,tk+1]Iφ0. (20)

Remark 2. By the Lie operator formalism, a nonlinear splitting is transformed
into the compositions of linear operators and hence Assumption 1 is realized.

Remark 3. The term O(τ3) in (18) represents the leading term of the local splitting
error. The symmetrical operator splitting scheme has second order consistency in
time because τ−1‖φ(tk+1) − φ(tk)‖ = O(τ2). If Aj(φ) and Al(φ) commute each
other, i.e., for any j 6= l, A′

jAl = AjA
′
l, where A′

j is the derivative with regard to
φ, then splitting error is vanished [6].

Remark 4. In fact, (20) produces a general Strang’s product formula

lim
n→∞

[e
t

2n
A1 · · · e

t
2n

AM−1e
t
n
AM e

t
2n

AM−1 · · · e
t

2n
A1 ]nIu0 = etAIu0.

Remark 5. If all Aj ’s are linear on φ, then we can represent the numerical solution
of (12) by linear operator semi-groups,

φk+1 = SA1(
1

2
τ) · · ·SAM−1(

1

2
τ)SAM (τ)SAM−1(

1

2
τ) · · ·SA1(

1

2
τ)φk,

where SAi(1
2τ) (i = 1, · · · , M) denotes the operator semigroup and Ai are the

corresponding generators. Here it only requires that Ai, i = 1, · · · , M , are closed,
densely defined linear operators, but can be unbounded. By the exponential formula
of linear semigroups [2],

SAi(
1

2
τ) = lim

n→∞
eAi(I−

Ai
n

)−1 1
2
τ , i = 1, · · ·M − 1,

and the limit is taken in strong topology sense. Similarly we can find the exponential
formula for SAM (t).

The operator splitting method is also applied to the perturbation equation (13)
such that

δφk+1 = S̄1, 1
2
τ · · · S̄M−1, 1

2
τ S̄M,τ S̄M−1, 1

2
τ · · · S̄1, 1

2
τδφk := S̄[tk,tk+1]δφk

and

δφN = ΠN−1
k=0 S̄[tk,tk+1]δφ0,

where S̄j, 1
2
τ = S∇Aj(φ)(1

2τ) = e
1
2
τ∇Aj(φ), j = 1, · · · , M−1, and S̄M,τ = S∇AM (φ)(τ)

= eτ∇AM (φ).
Similarly, the adjoint model (14) is split into M subproblems, i.e., −Dtφ

∗
j =

(∇Aj(φ))∗φ∗
j , j = 1, · · · , M . By the Marchuk-Strang symmetrical multi-component
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splitting over [tk+1, tk], it follows







































































−Dtφ
∗
1 = (∇A1(φ))∗φ∗

1, φ∗
1(tk+1) = φ∗′

1 (tk+1), t ∈ [tk+1, tk + τ
2 ]

· · ·
−Dtφ

∗
M−1 = (∇AM−1(φ))∗φ∗

M−1, φ∗
M−1(tk+1) = φ∗

M−2(tk+1 −
τ
2 ),

t ∈ [tk+1, tk + τ
2 ]

−Dtφ
∗
M = (∇AM (φ))∗φ∗

M , φM (tk+1)
∗ = φ∗

M−1(tk+1 −
τ
2 ),

t ∈ [tk+1, tk]

−Dtφ
∗′

M−1 = (∇AM−1(φ))φ∗′

M−1, φ∗′

M−1(tk + τ
2 ) = φ∗

M (tk),
t ∈ [tk + τ

2 , tk]
· · ·

−Dtφ
∗′

1 = (∇A1(φ))∗φ∗′

, φ∗′

1 (tk + τ
2 ) = φ∗′

2 (tk),
t ∈ [tk + τ

2 , tk].

(21)

Consequently, we have

S̄∗
j, 1

2
τ

= e−
1
2
τ(∇Aj(φ))∗ , (j = 1, · · · , M − 1), S̄∗

M,τ = e−τ(∇AM(φ))∗ (22)

and















φ∗
k = S̄∗

[tk+1,tk]φ
∗
k+1 + ∂φk

J (u0, φ)

= S̄∗
1,− 1

2
τ
· · · S̄∗

M−1,− 1
2

τ
S̄∗

M,−τ S̄
∗
M−1,− 1

2
τ
· · · S̄∗

1,− 1
2
τ
φ∗

k+1

+∂φk
J (u0, φ)

φ∗
N = 0,

(23)

where ∂φk
J (u0, φ) be the partial differential of J (u0, φ) with respect to φk for a

fixed first argument u0 and φ = {φ0, · · · , φN}.
Finally, we use the Marchuk-Strang symmetric splitting for the second order

adjoint problem (16), we can obtain that

{

φ∗∗
k = S̄∗

[tk+1,tk]φ
∗∗
k+1 + ( ¯̄S[tk,tk+1]δφk)∗φ∗

k+1 + ∂2
φk
J (u0, φ)δφk

φ∗∗
N = 0,

(24)

where ¯̄S[tk,tk+1] = ¯̄S1, 1
2
τ · · ·

¯̄SM−1, 1
2
τ

¯̄SM,τ
¯̄SM−1, 1

2
τ · · ·

¯̄S1, 1
2
τ and ¯̄Sj, 1

2
τ = e

1
2
τ∇2Aj(φ),

j = 1, · · · , M − 1, ¯̄SM,τ = eτ∇2AM (φ).
Let ∇τ

u0J (u0, φ(u0)) be the numerical approximation of ∇u0J (u0, φ(u0)) by the

operator splitting method and ∇2,τ

u0 J (u0, φ(u0)) the numerical approximation of

∇2
u0J (u0, φ(u0)) . Then one gets the following theorem.

Theorem 3.1. Let φ∗ be defined in (23) and φ∗∗ be defined in (24). Then Marchuk-
Strang operator splitting gives rise to

∇τ
u0J (u0, φ(u0)) = φ∗

0 + B−1(u0 − uB)

∇2,τ

u0 J (u0, φ(u0))δu0 = φ∗∗
0 + B−1δu0,

(25)

where φ∗
0 is the operator splitting solution at t0 defined in (23) and φ∗∗

0 is the operator
splitting solution at t0 defined in (24).
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Proof. Since ∂φk
J = H̄∗

kR−1
k (Hkφk − φobs

k ), it follows from (7) that

∇τ
u0J =B−1(u0 − uB) +

N
∑

k=0

S̄∗
[tk,t0]

∂φk
J

=B−1(u0 − uB) +

N
∑

k=0

S̄∗
[t1,t0]

· · · S̄∗
[tk,tk−1]

∂φk
J

=B−1(u0 − uB) + I∂u0J + S̄∗
[t1,t0]

(∂φ1
J

+ S̄∗
[t2,t1]

(∂φ2
J + · · · + S̄∗

[tN−1,tN−2]
(∂φN−1

J + S̄∗
[tN ,tN−1]

∂φN
J ))).

(26)

By the recurrence definition of φ∗
k in (23), it follows that

∇τ
u0J = φ∗

0 + B−1(u0 − uB).

This verifies the first equation in (25). The proof of the second equation in (25) is
similar to the proof of first equation in (25). This completes the proof.

Remark 6. By Theorem 3.1, we use the solutions of the first order adjoint equation
(23) to evaluate the gradient of the cost functional and the second order adjoint
(24) to compute Hessian vector products.

Here we give a brief discussion for stability of the operator splitting scheme. If
for the subproblems, the following is satisfied:

‖e
1
2

τAj‖ ≤ e
1
2
τωj , j = 1, · · · , j − 1, and ‖eτAM‖ ≤ eτωM , (27)

then ‖φk+1‖ ≤ eτω‖φk‖, where ω =
∑M

j=1 ωj . Consequently, the stability holds

on any finite time interval [t0, T ] if ω > 0. It also holds for an arbitrary large
time interval when ω ≤ 0. In practice the operator splitting scheme is stable if
each sub-step is stable. By Lax’s equivalence theorem [7], consistency and stability
together imply convergence, and higher order consistency yields faster convergence.
In particular, the following theorem specifies the global splitting error:

Theorem 3.2. Let µ(∇A(φ)) := limh→0+
‖I+h∇A(φ)‖−1

h
≤ λ, then

‖φ(tn) − φn‖ ≤ Cτ3(enλτ − 1)(eλτ − 1)−1,

where C is a positive number independent of τ .

Proof. One can find the proof in [4]. For completeness, we present the proof.
If the perturbation of the initial condition of (12) is δu0, then by the perturbation
equation (13) and using a semigroup expression, we have

δφ(t) = et∇A(φ)δu0.

Consequently,

‖δφ(t)‖ ≤ ‖et∇A(φ)‖‖δu0‖ ≤ eµ(∇A(φ))‖δu0‖ ≤ eλt‖δu0‖, (28)

where we have used Proposition 2.1 in [10] in the second step. By (18), the local
splitting errors do not exceed Cτ3 for some constant C. In computing φ2 there is
an error of Cτ3 in the initial condition, and by (28), the effect of this error at t2 is
Cτ3eλτ . Thus, the global splitting error at t2 is Cτ3 +Cτ3eλτ . Similarly the global
splitting error at t3 is

Cτ3 + (Cτ3 + Cτ3eλτ )eλτ .
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Repeating the procedure in the same way we find that the global splitting error at
tn is

n
∑

k=1

Cτ3e(n−k)λτ = Cτ3
n−1
∑

k=0

ekλτ = Cτ3(enλτ − 1)(eλτ − 1)−1.

Proposition 1. The global Marchuk-Strang splitting error in the 4D-Var is second
order for time step of length τ .

Proof. By the equality ez − 1 = O(z), a straightforward calculation implies that

(enλτ − 1)(eλτ − 1)−1 = O(
1

τ
).

By Theorem 3.2, ‖φ(tn) − φn‖ = O(τ2). The proof is completed.

By utilizing Theorem 3.2 and Proposition 1, the following proposition follows
immediately.

Proposition 2. [4] Let ∇τ
u0J (u0, φ(u0)) be the approximation of ∇u0J (u0, φ(u0))

by the Marchuk-Strang operator splitting method. If µ(∇A(φ)) and µ((∇A(φ))∗)
are bounded, then

‖∇u0J (u0, φ(u0)) −∇τ
u0J (u0, φ(u0))‖ ≤ Cτ2,

where C is a positive number independent of τ .

Similarly we can estimate the local and global splitting error for ‖∇2
u0J (u0, φ(u0))

v −∇2,τ

u0 J (u0, φ(u0))v‖ for any user-defined element v.
We remark that [13] used the operator splitting method for a chemical transport

model and obtained some interesting numerical results.

4. Conclusions. In this paper, we presented a framework for 4D-Var and discuss
the Marchuk-Strang symmetrical operator splitting methods in the functional 4D-
Var.

Constructing and solving adjoint models give rise to an efficient approach to
evaluate the gradient and Hessian of the optimization functional with respect to an
unknown parameter. When the forward model and adjoint models have complicated
structures and consist of different parts, one can use the operator splitting method.
The Marchuk-Strang symmetrical multi-component splitting method in the 4D-Var
gives rise to a second order splitting error for time step.
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