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Abstract. ‘No man is an island’ [John Donne]. Human and technological net-
works play a vital part in our lives, and their failures have often caused severe
adverse consequences. In this paper we address this crucial issue by presenting
a model to prevent not only network failures but also their propagation to the
remaining network elements. Our model forecasts the number of packets each
node is able to service without becoming overloaded, by determining the tran-
sition probabilities assigned to each link. Thus, our model ensures that nodes
receive as many packets as their network resources prescribe. The model is
portable to any type of topology and is based on Ordinary Differential Equa-
tions (ODEs), which are numerically solved as a multivariable, coupled system,
over a variety of topologies. Our numerical algorithm is based on the classic
Runge–Kutta 4th order, which is adjusted to integrate graph principles.

1. Introduction. Real world events have shown that network load can be affected,
either due to a physical catastrophe or unexpected increase of the number of clients
requesting service. A characteristic example is that of the 10th of August 1996,
when a voltage-based failure occurred in two power lines. Major power distur-
bances were propagated through a series of cascading failures, ultimately leading to
blackouts in 11 US states and 2 Canadian provinces, leaving 7 million people with-
out power for up to 16 hours [20]. In such cases, a network provider must be able
to quickly dynamically balance the load (network’s demand and supply) according
to the available network resources and prevent a cascading failure.

To date there have been continuous advances in Internet research along with its
connectivity structures [1]. In particular, recently there has been much interest in
studying cascading failures in complex networks. Initially Motter and Lai suggested
a capacity model (ML) to describe cascade failures [15]. According to this model,
the capacity is assigned in proportion to the load. Later, an analytical calculation
of the capacity parameter was investigated [21]. Additionally, a costless strategy
of defence was introduced and investigated to control and reduce the size of the
cascade failures [14]. Recently, an improvement of the existing ML capacity model
was suggested, in which the model is further generalized so that the proportionality
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constant is now changed to an increasing function of load [19]. In other research,
excitable networks have been modeled by Hodgkin–Huxley [12], Bonhoeffer–van
der Pol-FitzHugh–Nagumo (BPFN) [4, 3] and Kuramoto oscillators [16, 17], to
investigate performance in terms of activity and the subsequent synchronization
of the coupled excitable elements. In a recent work, the performance of BPFN
oscillators coupled on Small–World networks [8] was investigated to find that there
is no simple dependence on the network topology, instead, it is affected by the
complex pattern of interactions throughout the entire network [18]. Furtheremore,
Frank Kelly derived a mathematical model based on ODEs to analyze the stability
and fairness of a simple rate control algorithm defining a dynamical system [10, 11].
D’apice et al investigate a macroscopic fluid model on telecommunication networks
with sources and destinations [2], whereas Marigo investigates equilibrium solutions
for data flows on networks [13].

In this paper we present a capacity model, to balance network load according
to the available resources. A set of ODEs relates the capacity to the load. Our
model finds the best possible operating points for both traffic within each node and
transition probabilities assigned to each link. In particular, we assign two ODEs
to each network node to describe the change of both the number of packets within
each node and the transition probabilities assigned to each link (the probability that
a packet will travel across the link). Therefore, the number of ODEs we need to
numerically solve is at least twice the size of our network. The numerical solution
provides the number of packets each node is able to comfortably accommodate and
we call this the equilibrium point; the point at which the load is balanced amongst
the nodes. We find that network elements are exchanging packets in both a coherent
and synchronized fashion according to their primitive (network resources) charac-
teristics and their connectivity within the network. We experimentally find the
relation between the network resources, such as buffer capacity and service ability
and the equilibrium point that each node achieves. It is vital to properly assign net-
work resources without wasting them, in order to design practical stable networks.
Through these findings we aim to detect network failures and automatically seek
the equilibrium points, which have a central role in preventing cascading network
failures. In this paper we explain our numerical algorithm through which we inte-
grate graph principles (network’s connectivity) to classic Runge–Kutta 4th order,
in order to synchronize the coupled network elements and relate network resources
to each node’s equilibrium point.

2. The Model’s Formulation. In the following paragraphs, we outline our model
and the parameters that it depends on, along with the probabilistic and determin-
istic elements from which it is built. Consider single nodes i = 1, 2, · · · , N and
let G(V , E) be a finite directed graph, where V is the set of network nodes and
E ⊆ V × V , the set of unidirectional links. Let A = [aij ] be an ad-hoc adjacency
matrix, which is completely specified by an N × N matrix. It consists of zeros and
ones, such that each entry aij = 1 represents a connection between the nodes i

and j, whereas 0 implies there is no connection between the respective nodes. The
adjacency matrix is continuously updated, so that network connectivity is changed.

The main parameters of our model are illustrated in Table 1. In particular, a
set of N variables, x1, x2, ..., xN describe the traffic (node occupation e.g. bytes).
Consider m the number of incoming links towards a single node i ∈ V . A set of
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m ∈ E variables c1, c2, ..., cm describe the cost on the m ∈ E incoming unidirec-
tional links. Both the traffic, xj , and link–cost, cij parameters depend on time.
Each node and link have a number of initial–packets [xi]

0 and [cij ]
0 respectively,

given for the time-step tn = 0. A set of m ∈ E variables λ1, λ2, · · · , λm determine
the fraction of traffic relayed through m unidirectional links, which constitute the
coupling elements of our model. In this way the coupled network elements (links
and nodes) are synchronized through these time dependent transition probabilities,
λi, ∀ i ∈ [1, · · · , m]. These probabilities ensure that nodes receive as many pack-
ets as they can comfortably process. Thus transition probabilities toward almost
overloaded nodes are decreased towards zero, to correspondingly decrease the load
of the almost overloaded node. Every node is assigned a service power, si ∀ i ∈
V , which describes the ability each node has to process packets. The buffer capac-
ity variable, bi, ∀i ∈ V describes the maximum number of packets, within a node.
Both the buffer capacity and service power parameters are independent of time.
These built-in features allocated to each node operate as control parameters since
their values affect both the solution curves and equilibrium point. In particular
through the term si · (1 − xi

bi
) in the traffic Equation (2), which is introduced in

a following paragraph both the buffer capacity and service power determine the
pool from which packet rates take their values. A node without outgoing links
(i, j) ∈ E should not attract more packets, and thus its service power should even-
tually become zero. With regard to the probability distribution of traffic arriving
at a particular incoming link (i, j) ∈ E , the following two conditions must hold: (I)
The total mass of its elements is unity. (II) The probability of traffic arriving at
an incoming link is inversely proportional to its current traffic load. The second
condition on the transition probabilities ensures that each of the network elements
is neither idle nor overloaded. Thus, transition probabilities follow the principle
that the higher the cost, the fewer packets are sent through the link. This is mathe-
matically implemented by setting each transition probability inversely proportional
to the respective link cost. The transition probability for each link is denoted as an
element of the N ×N matrix, Λ = [λij ], which is defined such that λij ∈ [0, 1] with:

λij :=
∑

j∈V

λij = 1, ∀i ∈ V , and is determined by the relation,

λij =

1
cij

∑

k∈V

[

1

cik

] , ∀ (i, j) ∈ E such that cik 6= 0 ∀ k ∈ V . (1)

The aforementioned relation not only depends upon time t, but also on both
cost, cij , ∀ link (i, j) ∈ E and node occupation (traffic), xi, ∀ i ∈ V . This is because
cij depends on xi, through the following Equations (2) and (3). The non–negative
real–valued traffic variable, xj ∈ ℜ+∗, ∀ node j ∈ V , describes the change in the
number of packets within each node j ∈ V . The traffic rate is given by

dxj

dt
=

N
∑

i=1

λijsixi

(

1 −
xi

bi

)

− sjxj

(

1 −
xj

bj

)

. (2)

Through the non–negative link–cost variable, cij ∈ ℜ+∗ ∀ link (i, j) ∈ E , we
calculate the number of packets that occupy each link, (i, j) ∈ E . Each link–cost
variable is modeled by a nonlinear function, in order to deliver the least possible
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(a) (b)

Figure 1. (a). Illustration of a 2–node graph and (b). a 25–node
Ravsz-Barabasi graph.

congested service. The link–cost rate is given by

dcij

dt
= λij ·

[

si · (xj)
2

(1 + (xj)2)
−

sj · (xi)
2

(1 + (xi)2)

]

, (3)

and describes the cost ∀ incoming link (i, j) ∈ E , that is transferring traffic from
node i ∈ V to node j ∈ V .

Table 1. Model’s Parameters

Time dependent parameters Control parameters
(independent of time)

Number of packets within node i: xi ∀i ∈ V Buffer capacity for node i: bi, i ∈ V

Traffic — 1 × N matrix 1 × N matrix

Number of packets within link (i, j): cij ∀(i, j) ∈ E Power ability of node i: si, i ∈ V

Link–cost — N × N matrix 1 × N matrix

Transition Probability — Coupling element
Λ = [λij ],∀(i, j) ∈ E: N × N matrix

The concept behind the introduced link-cost function is that ‘Internet traces
come into bursts of bytes’ [6], whilst in social networks ‘people bring more people’.
This is mathematically described by the sigmoid curve. This ensures the network
responds rapidly to large influxes of packets, without overreacting to small changes
in activity. In the link-cost function described in Equation (3), small increases of
traffic cause a very small increase in the cost (few people/bytes would not change
the cost), whereas slightly higher volumes of traffic (large crowd of people/burst of
bytes) would initiate a more dramatic increase in cost, in order to accommodate
the number of people/bytes.

3. Integrating Graph Principles to Classic Runge–Kutta method. Here,
the traffic and link–cost ODEs (2) and (3), are coupled to lead to a large system
and further generalized through their application to multiple nodes. We modify the
classic Runge–Kutta method to include network connectivity and synchronise the
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coupled network elements (nodes and links). An implicit solution is more efficient,
but also computationally more expensive as it evaluates more functions per time
step. We consider it to be beyond the scope of this paper to apply an implicit
method. Instead, an explicit solution for xn+1 and cn+1 in terms of known values
at tn is provided. The application of a lower order method, such as Euler or its
improved version, also known as Runge-Kutta second order, would be less accurate
compared with Runge-Kutta forth order. A more accurate approximation, through
the application of Euler, would require the decrease of the time step. This decrease
would increase the amount of steps required to reach the desired accuracy. Fur-
thermore, short step sizes may lead to an accumulation of errors due to arithmetic
truncation error through finite precision arithmetic. In the introduced algorithm we
apply Runge-Kutta forth order and the time step is of the size 102. The introduced
algorithm provides the same accuracy in results with the smaller time step, such as
106, but without the cost of taking increased time and using more computational
power.

Our model is applied to directed graphs with bidirectional links. However,
throughout the numerical analysis we choose the cheapest direction on each link,
which is capable of transferring more traffic and has the least potential to create
link–bottlenecks during the traffic distribution on the graph G(V , E). For example,
for the case of a link (i, j) through which we transfer packets either from node i to
j or node j to i, we choose the cheapest direction. Thus, node i either forwards
packets to node j or receives packets from node j but not both. After preventing
bottlenecks within links, we search for nodes without service power to prevent bot-
tlenecks within nodes. A node i ∈ V without outgoing links is either deactivated
due to malfunction or has no available service power for new packets. Thus, in
order to stop this node from receiving more packets we set service power [si], i ∈ V
to zero. Our model relates the buffer capacity and service power of each node as a
form of the traffic load (number of packets). It is applied to a static network (with
respect to the number of packets injected), in which nodes start exchanging packets
until they reach equilibrium. Without loss of generality, this version of our model
lacks sink (more incoming flow) and source (more outgoing flow) nodes.

We simultaneously numerically solve the coupled traffic and link–cost differential
equations. Restrictions are set on the time dependent (traffic and link–cost) vari-
ables, to ensure non–negative values for both the traffic and link–cost variables. We
then calculate the current number of incoming links (m) for each node, to find the
number of coupled ODEs that describe the state of the studied node. In particular,
the number of ODEs required to be solved is at least twice the size of our network.
In other words, it is m link-cost equations and one traffic equation, through which
the state of a single node is described. This large system is numerically solved
through the classic Runge-Kutta formula i.e. explicit form of the 4th order [7],
which is adjusted in order to include the transition probability matrix [λij ]. Thus,
after the calculation of each traffic and link-cost slope approximation we readjust
the link-cost values and recalculate the transition probabilities to ensure transfer of
the appropriate quantity of packets in the most desirable direction.

In the following section, we present numerical solutions from both the original
version of the introduced Dynamically Adjusted Traffic Rate Alterations (DATRA)
model [9] and its second version, DATRAv2, which is presented in this paper. The
significant difference is that however dynamics are described by the same set of
ODEs, those ODEs are solved as two single variable problems in the first version,
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whereas in the second one as one multivariable problem. According to the first
version of the introduced model, Runge-Kutta is deployed to solve the traffic ODE
while the link cost is always inversely proportional to the traffic. Furthermore,
Runge–Kutta is deployed for second time in order to solve the link–cost ODE. Thus
in the first version of the introduced model traffic and link cost ODEs are solved
as two single–variable problems, whereas in the second version are solved as one
multivariable problem.

According to the first version of the introduced algorithm, the first single–variable
problem is summarised through the following recursion formulas:

cn
ij =

1

xn
j

,

λn
ij =

1

cn
ij

,
∑

λn
ij = 1,

cn+1
ij = cn

ij + h,

xn+1
j = xn

j +
1

6
· (sn

1 + 2 · sn
2 + 2 · sn

3 + sn
4 ),

whereas the second single–variable problem is summarised through the following
recursion formulas:

xn+1
j = xn

j + h,

cn+1
ij = cn

ij +
1

6
· (kn

1 + 2 · kn
2 + 2 · kn

3 + kn
4 ) .

According to the second version, the model is solved as one multivariable prob-
lem, which is described by the following recursion formulas:

xn+1
j = xn

j + h/6 · (sn
1 + 2 · sn

2 + 2 · sn
3 + sn

4 ),

λn+1
ij =

1

cn
ij

,
∑

λn+1
ij = 1,

cn+1
ij = cn

ij + h/6 · (kn
1 + 2 · kn

2 + 2 · kn
3 + kn

4 ),

In the following sections without loss of generality and for reasons of simplicity,
we illustrate numerical results from our model applied to graphs of two nodes,
Figure 1.a and the well known Ravsz–Barabasi graph of twenty–five nodes [5] in
Figure 1.b. We analyze the experimental results to demonstrate that: (I) The
number of equilibrium–packets at each node depends on every node’s buffer capacity
and service power; (II) Both the solution curves and the equilibrium points are
synchronized due to the coupling element between nodes which depends on their
connectivity; (III) The nature of the solution curves depends on both the buffer
capacity and the service power assigned to each node.

4. Numerical Results for a 2–Node Graph, G(2, 2). Consider the simplest
graph G(2, 2) depicted in Figure 1.a, that consists of two nodes and two unidirec-
tional links. We apply DATRAv2 to illustrate the behaviour of the traffic and its
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Figure 2. (a) DATRAv1 model applied to a 2–node graph —
solution curves for each node separately. (b) DATRAv2 runs on a
2–node graph G(2, 4). Five pairs of data solutions are illustrated.

rate over time for each node i ∈ G(2, 2). The control parameters are listed as fol-
lows. Link–cost capacities: [c11]

0 = 0, [c12]
0 = 250, [c21]

0 = 50, [c22]
0 = 0. Number

of initial packets [x1]
0 = 250, [x2]

0 = 50. Each time we numerically solve our model,
we vary the control parameters accordingly to reach different equilibrium points. In
Figure 2.b, we present four pairs of the numerical solutions of the Equations (2) and
(3) applied to the graph G(2, 2). We explain which control parameter is changed
for each example, in order for each node to reach a different equilibrium point.

For the first two examples we keep the same network characteristics, only chang-
ing the buffer capacities. For the first example we set buffer capacities [bi] =
[350, 350] and service power, [si] = [10, 10], equal for each node i ∈ G. The numer-
ical results for this example are illustrated by the dotted lines in Figure 2.b. We
observe that both nodes reach the same equilibrium point, at which they maintain
the same number of equilibrium–packets. In the second example we set different
buffer capacities for each node, [bi] = [550, 350]. Results from this example are illus-
trated by the solid lines in Figure 2.b. Each of these solid curves reaches different
equilibrium points, which are inversely proportional to their buffer capacity.

In the third example dash-dot lines illustrate numerical results, through which we
observe that by increasing the service power to [si] = [30, 30] the system reaches the
same equilibrium point as the dotted solution curves, but this time more quickly.
In the last example buffer capacities are set to be the same, whereas the service
rates are unequal, [si] = [40, 10]. This time (dashed solution curves) we observe a
significantly faster response time with introduced overshoot, which is triggered by
the difference between each node’s service power. In Figure 2.b we observe that
according to the dashed lines the number of packets within node 1 is dramatically
decreased, jumping from 250 packets to 100 packets within the first 0.25 seconds.

Application of the original version of our numerical algorithm [9]. In
this example we consider the same graph, G(2, 2) with homogeneously distributed
control parameters, similar with the example in Section 4. We provide experimental
evidence that DATRAv2 achieves equilibrium 100 times more quickly than the
original DATRAv1 algorithm. In Figure 2.a, solution curves for nodes one and
two are produced by our original model DATRAv1, symmetrically oscillate around
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Figure 3. Example 1: (a) 25 node Ravsz-Barabasi graph with
homogeneously distributed built-in attributes and initial-packets.
(a) Node 11 is the only node within G3 which is not connected
to the core node, and thus its solution curve demonstrates a phase
shift, and it receives fewer packets, resulting in a lower amplitude.

the equilibrium point, whilst their amplitude is exponentially reduced. According
to this model the traffic and link-cost equations are solved as two single variable
problems using the classic Runge–Kutta in the explicit form with forth order [7].
Therefore, we first numerically analyze the traffic equation always keeping the link
cost value inversely proportional to the traffic value and respectively calculating the
transition probabilities. The output of the traffic ODE is the input of the link–cost.
Therefore, each time we numerically solve the link–cost ODE, we have a dramatic
increase or decrease in the number of packets within each node. These dramatic
changes produce oscillations around the equilibrium point. In Figures 2a. and 2.b
we also observe that both nodes achieve the same equilibrium point at 150 packets.
Finally, we observed that in both examples, independent of the algorithm deployed,
the equilibrium point contains the same quantity of packets, 150.

5. Numerical Results on a 25–node Ravasz–Barabasi Graph. Consider the
well known Ravasz–Barabasi graph of 25 labeled nodes with two hierarchical levels
and a scale–free degree distribution [5], which is depicted in Figure 1.b. We split the
25–node Ravasz–Barabasi graph into five subgraphs, G1,G2,G3,G4,G5. In particular,
G1 consists of four nodes with degree four, whereas each of the other subgraphs,
G2,G3,G4,G5 consist of five nodes, out of which three of them have degree four and
two of them have degree five.

We present numerical results from three examples, in which we vary the control
parameters accordingly. For the first example, we follow a homogeneous distribution
of the buffer capacity and service power. We demonstrate that networks with ho-
mogeneously distributed attributes and the same connectivity, achieve equilibrium
with the same number of equilibrium–packets. In Figure 3.a we split the solution
curves into four categories according to the amplitude of the solution curve. The
first category consists of the curve where the number of packets is decreased almost
exponentially. In this category, outgoing link–costs are cheaper compared with in-
coming link–costs. This curve is produced by node 1 due to the large number of
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Figure 4. Example 2: Ravsz-Barabasi graph, G2, G5: non-
homogeneously distributed buffer capacities.

initial–packets. The second category consists of the solutions, which are produced
by G1. As this graph consists of four homogeneous nodes (same connectivity and
control parameters) their curves are also homogeneous. We observe that the G1

subgraph receives a larger number of packets compared with G2, G3, G4 and G5.
This larger amount of traffic is created due to the fact that G1 has better con-
nectivity with node 1, as all nodes ∈ G1 are connected directly to node 1. The
third category consists of curves for nodes ∈ {G2,G3,G3,G5}, which are connected
to node 1. The final category consists of solutions that oscillate with the minimum
amplitude. These solution curves are produced from nodes ∈ {G2,G3,G3,G5} which
are not connected to node 1. In Figure 3.b curves from nodes that belong to the
second subgraph G2 are illustrated. Node 6 is the only node within G2, which is
not connected to node 1. Its curve demonstrates a phase shift, as it receives fewer
packets.

In the second example we distribute the buffer capacities of each node in a non–
homogeneous fashion. Through this simulation we present the relationship between
the buffer capacity and the equilibrium that each node achieves. The higher the
buffer capacity assigned, the lower the equilibrium point achieved. As a result of the
non–homogeneous distribution of the buffer capacities, each of the nodes achieves a
different equilibrium, which depends on its buffer capacity. Figure 4.a demonstrates
the solution curves for each of the nodes that belong to the second subgraph, G2.
Nodes labeled 8 and 10 are assigned larger buffer capacities — [b8] = 650, [b10] =
400 — to achieve equilibrium with smaller number of packets, compared with the
equilibrium that the other three nodes achieve, within G2. We also observe that
node 8 achieves equilibrium with fewer packets (as its buffer capacity is [b8] = 650
> [b10] = 400) compared with the equilibrium–packets for node 10. For the same
reason, node 8 is assigned a larger buffer capacity ([b8] = 650 > [b1] = 560) than
node 1, and thus the number of equilibrium–packets for node 8 is less than for node
1. Figure 4.b shows the synchronised solution curves for the nodes that belong to
the fifth subgraph, G5. Node 22 is assigned a relatively large buffer capacity ([b22]
= 450) and therefore is the one that achieves the equilibrium point with the least
number of equilibrium–packets compared with the rest of the nodes ∈ G5.
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Figure 5. Example 3: G4, G5: Ravsz-Barabasi graph with non-
homogeneously distributed buffer capacities and service powers

Finally, we illustrate results from the third example, according to which all the at-
tributes characterising each node are distributed in a non–homogeneous way. Figure
5 illustrates solution curves produced from nodes that belong to G4 and G5. This
example shows that regardless of the non–homogeneity of the graph’s attributes,
the curves are synchronised and lead to analogous equilibrium. Furthermore, nodes
assigned a high service power produce overshoot for the first ten time steps, while
their high service power affects the number of equilibrium packets. Figure 5.a il-
lustrates the solutions from the nodes that belong to the fourth subnet, G4. Node
16 has no communication link with node 1 and is the only one that that is not
introducing overshoot in its curve. Node 18 is assigned twice the service power,
compared with the other nodes within G4. Therefore, it only forwards packets to
its first neighbours. Nodes 17, 19 and 20 have a significantly faster response time
with introduced overshoot, as they are directly connected to node 1 and node 18.
Therefore, we observe in Figure 5.a that the number of packets within nodes 17, 19,
and 20 is dramatically increased, jumping from 50 to 100 packets within the first 10
time steps. They also achieve the same equilibrium point, as they are allocated the
same value for both their buffer capacities and service powers. Moreover, we observe
that the higher service power affects the equilibrium point. Figure 5.b illustrates
curves that describe the number of packets at each time step, for nodes within the
fifth subgraph, G5. Nodes 21, 23 and 24 are allocated the same values for their buffer
capacities and service powers, therefore they achieve the same equilibrium point.
In contrast, node 22 achieves a lower equilibrium compared with the others. Node
21 is not connected to node 1 and is the only one that is not introducing overshoot.
Node 25 is assigned a three times stronger service power, compared with the other
nodes within G5, causing a lower equilibrium point, by means of overshoot.

6. Conclusions. Through our model, we find the best possible function of the
buffer capacity and service power as a form of the traffic load (number of packets).
The function is characterized as the best possible with respect to the synchroniz-

ability of solution curves. The coupling element λij comprises the óptimaĺfeature of
our model through which we synchronize our solution curves, taking consideration
both the node properties (buffer capacity and service ability) and the network’s
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connectivity. We inject a specific number of packets and we allocate network re-
sources, such as buffer capacity and service power to initialise our test network. Our
model fairly distributes the number of initial packets to each node and very quickly
achieves equilibrium. The coupled model DATRAv2 is better than its original ver-
sion [9], as it achieves equilibrium almost hundred times more quickly, without
oscillating around the equilibrium point. We observed the inversely proportional
relationship between the buffer capacity and number of equilibrium—packets. Ad-
ditionally, high service power nodes ‘shot out’ too many packets to their neighbours,
which affected both their equilibrium and nature of the solution curves. Taking the
above points into consideration, we conclude that it is vital to properly assign net-
work resources such as buffer capacity and service power, in order to design a stable
network (in terms of the solution curves). Our suggested model for assigning buffer
capacities and service powers to nodes will be useful in designing practical stable
networks, without wasting the resources. During a simulation (numerical analysis
of an example), given that the number of initial packets injected into the network
is static, our model always reaches an equilibrium solution.

Acknowledgments. The authors would like to thank Alexandre Caboussat (De-
partment of Mathematics, University of Houston) for his valuable comments and
suggestions.

REFERENCES

[1] D. Alderson, H. Chang, M. Roughan and S. Uhlig, W. Willinger The many

facets of internet topology and traffic Netw. Heterog. Media, 1, (2006), 569–600,
http://www.ams.org/mathscinet-getitem?mr=2276254.

[2] C. D’Apice, R. Manzo and B. Piccoli A fluid dynamic model for telecommunication networks

with sources and destinations SIAM Journal on Applied Mathematics (2008), 68, 4, 981–1003,
http://www.ams.org/mathscinet-getitem?mr=2455475.

[3] D. E. Boschi, C. and Louis, E. and Ortega, G. Triggering synchronized oscillations through

arbitrarily weak diversity in close-to-threshold excitable media Phys. Rev. E 65 1 (2001).
[4] Cartwright and Julyan H. E. Emergent global oscillations in heterogeneous excitable

media: The example of pancreatic β cells Phys. Rev. E 62 1 (2000), 1149–1154
http://link.aps.org/doi/10.1103/PhysRevE.62.1149.

[5] M. Chavez and D–U. Hwang and A. Amann and H. G. E. Hentschel and S. Boccaletti Synchro-

nization is Enhanced in Weighted Complex Networks Phys. Rev. Lett. 94 (2005), 218701–4
http://link.aps.org/doi/10.1103/PhysRevLett.94.218701.

[6] Allen B. Downey Evidence for long–tailed distributions in the Internet SIGCOMM conference
on Internet measurement, (2001), 149–160.

[7] E. Hairer, F.P. Norsett and G. Wanner Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer, Berlin-Heidelberg-New York, (1987).

[8] Hong, H. and Choi, M. Y. and Kim, Beom Jun Synchronization on small-world networks

Phys. Rev. E 65 2 (2002), 026139-13 http://link.aps.org/doi/10.1103/PhysRevE.65.026139.
[9] Antonia Katzouraki and Philippe De Wilde and Robert A. Ghanea Hercock Intelligent Traffic

Control on Internet-Like Topologies - DATRA - Dynamically Adjusted Traffic Rate Alter-

ations SOAS IOS Press, Frontiers in Artificial Intelligence and Applications 135 (2005).
[10] F. Kelly Mathematical modelling of the Internet ICIAM in Fourth International Congress on

Industrial and Applied Mathematics (1999).
[11] F. Kelly, A. K. Maulloo and D. K. H. Tan Rate control in communication networks: shadow

prices, proportional fairness and stability. J. Operational Research Society 49 (1998).
[12] Lago-Fernández, Luis F. and Huerta, Ramón and Corbacho, Fernando and Sigüenza, Juan
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