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A REMARK ON BLOW-UP AT SPACE INFINITY

Yukihiro Seki
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3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

Abstract. In this note we discuss blow-up at space infinity for quasilinear
parabolic equation ut = ∆u

m + u
p. It is known that if initial data is not

a constant and takes its maximum at space infinity in a certain sense, the
solution blows up only at space infinity at minimal blow-up time. We show
that if m ≥ 1 and a solution blows up at minimal blow-up time, then it blows
up completely at the blow-up time.

1. Introduction. Let us consider the Cauchy problem for quasilinear parabolic
equations

{

ut = ∆um + up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(1)

where p > 1, m > 0 are constants and initial data u0 6≡ 0 is a nonnegative bounded
continuous function in RN .

We begin with the definition of weak solution.

Definition 1.1 (weak solution). Let G be a domain in RN . A function u = u(x, t)
defined on Ḡ× [0, T ) is said to be a weak solution of (1) in G× ([0, T ) if:
(i) u(x, t) ≥ 0 in Ḡ× [0, T ) and u ∈ BC(Ḡ× [0, τ ]) for each 0 < τ < T ;
(ii) For any bounded domain Ω ⊂ G with smooth boundary ∂Ω, 0 < τ < T and
nonnegative η ∈ C1,0(Ω̄ × [0, T )) ∩ C2,1(Ω × [0, T )) which vanishes on ∂Ω,

∫

Ω

u(x, τ)η(x, τ)dx −

∫

Ω

u(x, 0)η(x, 0)dx

=

∫ τ

0

∫

Ω

{u∂tη − um∆η + upη}dxdt−

∫ τ

0

∫

∂Ω

um∂νηdSdt, (2)

where ν denotes the outer unit normal to the boundary.

A supersolution [or subsolution] is similarly defined with the equality of (2)
replaced by ≥ [ or ≤ ].

Problem (1) admits a unique weak solution u in RN × [0, T ) for some T ∈ (0,∞]
and it can be prolonged in time as long as it remains bounded. ([17, 15, 5, 3, 6, 4]).
We set

T (u0) = sup{T ∈ [0,∞)| sup
0<t<T

‖u(·, t)‖L∞(RN ) <∞}.

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Blow-up at space infinity, minimal blow-up time, complete blow-up.
The author was supported by Research Fellowships of the Japan Society for the Promotion of

Science for Young Scientists.

691



692 YUKIHIRO SEKI

If T (u0) = ∞, then the solution is said to be a global (weak) solution problem (1),
and if T (u0) < ∞, then the solution is said to blow up at the time T (u0). In this
case, it is readily seen that

lim
tրT (u0)

‖u(·, t)‖∞ = ∞.

The blow-up set of solution u is defined as the set of all the points a ∈ RN for
which u is not locally bounded at (a, T (u0)).

The simplest example of blowing up solution is a flat one solving ordinary differ-
ential equation

dv

dt
= vp, t > 0, v(0) = M, (3)

where M is a positive constant. Henceforth we denote the solution of (3) by vM .
A simple computation reveals that

vM (t) = κ(TM − t)−1/(p−1) with κ = (p− 1)−1/(p−1) and TM =
1

(p− 1)Mp−1
.

A solution u of problem (1) is said to blow up at space infinity if there exists a

sequence {(xn, tn)} ⊂ RN × (0, T (u0)) such that

|xn| → ∞, tn ր T (u0) and u(xn, tn) → ∞ as n→ ∞. (4)

Blow-up at space infinity was initially discussed in [14] for one-dimensional semi-
linear problems (see also [8] for related results) and then in [9, 10] for semilinear
equations ut = ∆u+ f(u) in general space dimension. As is readily seen from this
definition, if u blows up at minimal blow-up time, it blows up at space infinity in
some directions. To be more precise, a direction ψ ∈ SN−1, where SN−1 is the
(N − 1)-dimensional unit sphere, is said to be a blow-up direction if there exists a

sequence {(xn, tn)} ⊂ RN × (0, T (u0)) satisfying (4) and xn/|xn| → ψ as n → ∞.
We note that this notion was first introduced in [10] and that the blow-up directions
are characterized there by initial data.

The results of [9, 10] were generalized to quasilinear equations including the
equation of (1) with m ≥ 1 in [19] and with m ≤ 1 in [18] as a typical equation.
Moreover, in these articles, the authors introduced the notion of minimal blow-up
time and showed necessary and sufficient conditions on initial data for a solution of
(1) to have a minimal blow-up time. We would like to emphasize that [19, 18] are
the only articles which give a characterization on initial data for a solution to have
a minimal blow-up time in all the articles we have introduced (See also [11]).

We shall recall the notion of minimal blow-up time and some properties of the
solutions with minimal blow-up times. Hereafter we select M = ‖u0‖∞. A solution
u of problem (1) with initial data u0 is said to blow up at minimal blow-up time or
the least (possible) blow-up time if T (u0) = TM .

In order to state the characterization result obtained in [19, 18], let us introduce
the following condition on initial data. A direction ψ ∈ SN−1 is said to be a
direction of mean convergence of u0 (to M) if there exists a sequence {xn} ⊂ RN

such that

|xn| → ∞,
xn

|xn|
→ ψ and u0(x+ xn) → ‖u0‖∞ a.e. in RN as n→ ∞. (5)

Henceforth we denote by BR(a) the open ball in RN with radius R > 0 centered at

a ∈ RN and write BR = BR(0) for simplicity.
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Proposition 1. Suppose that ψ ∈ SN−1 is a direction of mean convergence of u0.

Then the solution u of problem (1) blows up at minimal blow-up time and ψ is a

blow-up direction of u. Moreover, if m ≥ 1, then u satisfies the condition that

lim
n→∞

sup
x∈BR(xn)

|u(x, t) − vM (t)| = 0 (6)

uniformly on each compact sets of {0 < t < TM} for each R > 0, where {xn} is a

sequence satisfying the condition (5).

Proposition 2. Assume that p > max{m, 1}. Let u be a solution of problem (1)
that has a minimal blow-up time. Then the following hold:

(i) If the initial data u0 is not a constant, then the solution u blows up

only at space infinity, that is, the blow-up set is empty.

(ii) A direction is a blow-up direction of u if and only if it is a direction of

mean convergence of u0.

Moreover, if m ≥ 1, then for any direction of mean convergence ψ ∈ SN−1 and any

R > 0, the solution u satisfies (6).

Proposition 3. Assume that p > max{m, 1}. Then a solution u of problem (1)
blows up at minimal blow-up time if and only if the initial data u0 has at least one

direction of mean convergence.

We would like to consider the behavior of the solutions beyond the blow-up times.
Weak solutions, of course, do not make sense after blow-up times, but there is a
notion of solution which enables us to discuss the possibility of extending solutions
of (1) beyond blow-up times ([2, 7, 21]).

Following [7, 21], we shall define the notion of generalized solution. Let un be a
unique solution to the problem

{

(un)t = ∆um
n + fn(un), in RN × (0,∞),

un(x, 0) = u0(x), in RN ,
(7)

n = 1, 2, ..., where fn(u) := min{n, up}. Note that for each n, the problem (7) has
a global weak solution by virtue of globally Lipschitz continuity of the term fn.

Definition 1.2 (proper solution, complete blow-up). Given initial data u0, we call
the limit function u(x, t) := limn→∞ un(x, t) ∈ [0,∞] a proper solution of problem

(1). If u ≡ ∞ in RN × (T (u0),∞), we say that the solution u blows up completely
at t = T (u0) and otherwise we say that incomplete blow-up occurs at t = T (u0).
Following [21], we set

tc(u0) = inf{T ∈ [0,∞] | u(x, t) ≡ ∞ for each (x, t) ∈ RN × (T,∞)}

and call it complete blow-up time.

Clearly, any proper solution agrees with weak solution with the same data in
RN × (0, T (u0)) and T (u0) ≤ tc(u0).

Galaktionov and Vazquez [7] defined proper solution in the general framework
using order-preserving semigroups acting on ordered topological space in order to
deal with quasilinear equations not necessarily endowed with semilinear structures.
Our definition of proper solution agrees with theirs, once we apply their general
results to a suitable function space. Moreover, they applied the general results to
the space of nonnegative, measurable functions and proved that when p +m ≤ 2,
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incomplete blow-up always occurs and when 2 − m < p ≤ m(N + 2)/[N − 2]+,
every blowing up solution blows up completely at the blow-up time. We recall some
related results for the Cauchy or the Cauchy-Dirichlet problem in a bounded convex
domain Ω. For a semilinear heat equation

ut = ∆u+ up, p > 1, (8)

Baras and Cohen [2] proved that all nonnegative blow-up solutions of the Cauchy-
Dirichlet problem for blow up completely at the blow-up times if p < ps := (N +
2)/[N − 2]+ or ∆u0 + up

0 ≥ 0 in the distributional sense. Suzuki [21] generalized
their results to the quasilinear equation ut = ∆um + up. He also obtained similar
results for the corresponding Cauchy problem in RN .

Recently, M. Shimojō [20] studied the Cauchy problem for semilinear heat equa-
tions (8), which corresponds to the case of m = 1 in the equation of (1). He gave
a sufficient (but not necessary) condition on initial data for a solution to have a
minimal blow-up time in our notation and proved that blow-up occurs only at space
infinity for initial data satisfying the condition. He not only proved that the blow-up
sets of such solutions are empty but also discussed blow-up profiles at the blow-up
time and, moreover, showed that such blow-up is always complete at the time.

Our aim is to show that for any initial data that provides a solution of problem
(1) with minimal blow-up time, the blow-up is surely complete, that is, if a solution
u of problem (1) has a minimal blow-up time TM , it blows up completely at the
blow-up time. In other words, it cannot be prolonged beyond the time as a proper
solution that takes finite values. We are now in the position to state our main
result.

Theorem 1.3. Assume that p ≥ m > 1 or m = 1. Suppose that a solution u of

problem (1) blows up at minimal blow-up time TM . Then u blows up completely

at the time. Namely, the complete blow-up time tc(u0) coincides with TM .

Remark 1. We have assumed the condition of p > m in Propositions 2 and 3, but
the assumption is weaken so as to include the case p = m > 1 in this theorem.

2. Proof of Theorem. Let τ > 0, R > 0 and set ǫ = e−R. Let wR(x, t) be the
solution to the problem







wt = ∆wm + wp, in BR × (τ, T ),
w(x, t) = 0, on ∂BR × (τ, T ),
w(x, τ) = w0,R(x), in BR,

(9)

where w0,R is a smooth, bounded, radial nonincreasing function on BR satisfying

w0,R(x) =

{

vM (τ) − ǫ, x ∈ B(1−ǫ)R,
0, x ∈ ∂BR,

w0,R ≤ vM (τ) − ǫ in BR and
∫

BR

w0,R(x)ψ(x)dx ≥ vM (τ) − 2ǫ. Denote by T (R)

the blow-up time of wR, that is,

T (R) ≡ sup{T > 0; sup
0<t<T

‖wR(·, t)‖L∞(BR) <∞}. (10)

Lemma 2.1. Assume the same hypotheses as in Theorem 1.3 and take a sequence

{xn} ⊂ R
N satisfying condition (5). Let u be a proper solution with initial data

u0. Then, for any µ > 0, there exist sufficiently large R > 0 and n0 ∈ N such that

u(x, t) = ∞ in BR(xn) × (TM + µ,∞) (11)

provided n ≥ n0.
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Proof. For any R > 0, we have that

lim
n→∞

sup
x∈BR(xn)

|u(x, t) − vM (t)| = 0

uniformly on each compact sets of {0 < t < TM} by Proposition A. Then there
exists an n0 ∈ N such that

w0,R(x− xn) ≤ vM (τ) − ǫ < u(x, τ) for x ∈ BR(xn) provided n ≥ n0.

Hence we deduce that

wR(x− xn, t) ≤ u(x, t) for (x, t) ∈ BR(xn) × (τ, TM ) provided n ≥ n0

by the comparison theorem.
We use the well-known eigenfunction method developed in [13, 12, 21]. Let λR

be the principal eigenvalue of −∆ in BR with homogeneous Dirichlet boundary
condition and let ψR(x) > 0 be the corresponding eigenfunction normalized as
∫

BR

ψR(x)dx = 1. We set

JR(t) =

∫

BR

wR(x, t)ψR(x)dx, t > 0,

and define a nondecreasing convex function ΓR as follows: When p > m,

ΓR(ξ) ≡











ξp − λRξ
m, if

(λRm

p

)1/(p−m)

≤ ξ,

−
(λRm

p

)m/(p−m)λR(p−m)

p
, if 0 ≤ ξ ≤

(λRm

p

)1/(p−m)

and when p = m > 1, ΓR(ξ) = (1− λR)ξp for any ξ ≥ 0. Here we may assume that
λR < 1, taking R sufficiently large. For ξ > 0, we set

t̃R(ξ) =

∫ ∞

ξ

ds

ΓR(s)
.

We then make use of [21, Proposition 3.8], to obtain

wR(x, t) = ∞ in BR(0) × (t̃R(JR(τ)),∞).

Here we used the convexity of the function ΓR. We have then obtained

wR(x− xn, t) = ∞ in BR(xn) × (t̃R(JR(τ)),∞).

The conclusion (11) then follows at once if we show that

t̃R(JR(τ)) ≤ TvM(τ) + µ (12)

for some R > 0, since TM = τ + TvM(τ). Note that, if R > 0 is sufficiently large,

ΓR(ξ) = ξp − λRξ
m for ξ ≥M − 2ǫ = M − 2e−R. Since JR(τ) ≥M − 2e−R,

t̃R(JR(τ)) =

∫ ∞

JR(τ)

dξ

ξp − λRξm
→ TvM(τ) as R → ∞.

We thus obtain (12).

Proof of Theorem. Applying Lemma 2.1 and [21, Proposition 3.5], we have

u(x, t) = ∞ in RN × (TM + µ,∞),

which implies tc(u0) ≤ TM + µ. Since µ is arbitrary, we conclude tc(u0) = TM ,
which completes the proof.
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