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Abstract. In this paper, modified Korteweg-de Vries (mKdV) and Harry
Dym (HD) surfaces are considered which are arisen from using soliton sur-
face technique and a variational principle. Some of these surfaces belong to
Willmore-like and Weingarten surfaces, and surfaces that solve the generalized
shape equation classes. Moreover, parameterized form of these surfaces are
found for given solutions of the mKdV and HD equations.

1. Introduction. Surface theory in three dimensional Euclidean space is widely
used in different branches of science, particularly mathematics (differential geom-
etry, topology, Partial Differential Equations (PDEs)), theoretical physics (string
theory, general theory of relativity), and biology [19]-[6]. There are some special
subclasses of 2-surfaces which arise in the branches of science aforementioned. For
the classification of surfaces, there are some conditions which are sometimes given
as algebraic relations between Gaussian and mean curvatures and sometimes given
as differential equations for these two curvatures. Here are some examples of some
subclasses of 2-surfaces; Minimal surfaces, Surfaces with constant Gaussian curva-
ture, Weingarten surfaces, Willmore surfaces, Surfaces that solve the shape equation
of lipid membrane. Some examples and details about these surfaces can be found
in [7]-[13].

Although numerous scientists have studied minimal surface theory, Joseph Plateau
considerably contributed to minimal surface studies with his experiments on soap
films and soap bubbles. Plateau worked on the free energy of films. In 1805
and 1839, T. Young and P. S. Laplace, respectively, considered the free energy
of closed soap bubbles. In 1833, Poisson considered the free energy of a solid shell
as F = ◦

∫∫

SH2dA. In 1982, T. J. Willmore [28] found the Euler-Lagrange equation

arising from Poisson’s free energy F as ∇2H + 2H(H2 − K) = 0, where ∇2 is the
Laplace-Beltrami operator and K is the Gaussian curvature of the surface. Solu-
tions of this equation are called Willmore surfaces. In 1973, Helfrich proposed the

curvature energy per unit area of the bilayer Elb = (kc/2) (2H + c0)
2

+ k̄K, where
kc and k̄ are elastic constants, and c0 is spontaneous curvature of the lipid bilayer.
Using the Helfrich curvature energy, the free energy functional of the lipid vesicle
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is written as

F = ©
∫∫

S

(Elb + ω) dA + p

∫∫∫

dV. (1)

Taking the first variation of F , Ou-Yang and Helfrich [16] obtained the shape equa-
tion of the bilayer, p−2ωH +kc∇2(2H)+kc(2H + c0)(2H2− c0H −2K) = 0. Later
Ou-Yang et al. considered the general energy functional

F = ©
∫∫

S

E(H, K) dA + p

∫∫∫

V

dV (2)

which arises both in red blood cells and liquid crystals [18], [26]-[13]. Here E is
function of H and K, p is a constant, and V is the volume enclosed within the
surface S. For open surfaces, we let p = 0. The first variation (Euler-Lagrange)
of F gives a highly nonlinear PDE of K and H on surface S. It is given by [18],
[26]-[27]

(∇2 + 4H2 − 2K)
∂E

∂H
+ 2(∇ · ∇̄ + 2KH)

∂E

∂K
− 4HE + 2p = 0, (3)

where ∇2 and ∇ · ∇̄ will be defined latter part of the paper.
As it is shown, certain subclasses of surfaces arise as solutions of some differential

equations. That is there are some relations between surfaces and PDEs. Since
these equations are high order nonlinear PDEs, these equations are not so easy
to solve. For this reason some indirect methods [20]-[5] have been developed for
the construction of 2-surfaces in R

3 and three dimensional Minkowskian geometry
(M3). One of these methods is arisen from Soliton theory. We call this technique
as Soliton surfaces technique. Soliton surface theory was first developed by Sym
[20]-[22]. Then it was studied by Fokas and Gel’fand [8].

Here, Fokas and Gel’fand approach is considered to construct surfaces by using
soliton equations. Let G be a Lie group and g be the corresponding Lie algebra.
We give the theory for dim g = 3, it is possible to generalize it for finite dimension
n. Assume that there exists an inner product 〈, 〉 on g such that for g1, g2 ∈ g as
〈g1, g2〉. Let {e1, e2, e3} be the orthonormal basis in g such that 〈ei, ej〉 = δij , where
δij is the Kronecker delta. In this paper, we use Einstein’s summation convention
on repeated indices over their range.

Theorem 1.1 (Fokas and Gel’fand [8]). Let U , V , A, and B be g valued differen-
tiable functions of x, t, and λ for every (x, t) ∈ O ⊂ R

2 and λ ∈ R. Assume that
U , V , A, and B satisfy the following equations

Ut − Vx + [U, V ] = 0 and At − Bx + [A, V ] + [U, B] = 0. (4)

Then the following equations

Φx = U Φ, Φt = V Φ and Fx = Φ−1 AΦ, Ft = Φ−1 B Φ, (5)

define surfaces Φ ∈ G and F ∈ g, respectively. The first and second fundamental
forms of the surface F are of the following form, respectively

(dsI)
2 ≡ gijdxi dxj = 〈A, A〉 dx2 + 2〈A, B〉 dx dt + 〈B, B〉 dt2, (6)

(dsII)
2 ≡ hijdxi dxj = 〈Ax + [A, U ], C〉 dx2 + 2〈At + [A, V ], C〉 dx dt (7)

+〈Bt + [B, V ], C〉 dt2

where i, j = 1, 2, x1 = x, x2 = t. Here C = [A, B]/‖[A, B]‖, [A, B] denotes the

usual commutator, and ‖X‖ =
√

〈X, X〉. The Gaussian and mean curvatures of
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the surface are, respectively, shown by

K = det(g−1)h, H =
1

2
trace(g−1h), (8)

where g and h denote the matrices (gij) and (hij), respectively, and g−1 stands for
the inverse of the matrix g.

As it is seen in Theorem 1.1, we need to know the fundamental forms and curva-
tures to characterize a surface . In order to calculate them, it is sufficient to know
U , V , A, and B. Since the main aim is to find a class of surfaces, which corresponds
to integrable equations, we need here to find A and B from (4). But in general,
solving this equation is difficult. However, there are some deformations that pro-
vide A and B directly. They are spectral parameter, symmetries of the (integrable)
differential equations, the Gauge symmetries of the Lax equation deformations, and
the deformation of parameters for solution of integrable equation. The first three
were given by Sym [20]-[22], Fokas and Gel’fand [8], Fokas et al. [9] and Cieśliński
[5]. The last one is introduced in [24]. In this paper, we consider the following
deformations,

1. Spectral parameter λ invariance of the equation:

A = µ1
∂U

∂λ
, B = µ1

∂V

∂λ
, F = µ1 Φ−1 ∂Φ

∂λ
, (9)

where µ1 is an arbitrary function of λ [20]-[22].
2. The deformation of parameters for solution of integrable equation:

A = µ2 (∂U/∂ξi) , B = µ2 (∂V/∂ξi) , F = µ2Φ
−1 (∂Φ/∂ξi) , (10)

where i = 0, 1 and ξi are parameters of the solution u(x, t, ξ0, ξ1) of the PDEs,
µ2 is constant. Here x and t are independent variables. [24]

On the other hand, there are some surfaces that arise from a variational princi-
ple for a given Lagrange function free energy, which is a polynomial of degree less
than or equal to two in the mean curvature of the surfaces. Examples of this type
are minimal surfaces, constant mean curvature surfaces, linear Weingarten surfaces,
Willmore surfaces, and surfaces solving the shape equation for the Lagrange func-
tions. Taking more general Lagrange function of the mean and Gaussian curvatures
of the surface, we may find more general surfaces that solve the generalized shape
equation (3). Examples for this type of surfaces can be found in [11] and [23].

Let S be a 2-surface (either in M3 or in R
3) with the mean and Gaussian curva-

tures H and K, respectively.

Definition 1.2. A free energy F of S is defined by (2), where E is some function
of H and K, p is a constant and V is the volume enclosed within the surface S. For
open surfaces, we let p = 0.

The following proposition gives the first variation of the functional F .

Proposition 1. Let E be a twice differentiable function of H and K. Then the
Euler-Lagrange equation for F reduces [18], [26]-[27] to (3), where ∇2 and ∇·∇̄ are
defined as

∇2 =
1√
g̃

∂

∂xi

(

√

g̃gij ∂

∂xj

)

, ∇·∇̄ =
1√
g̃

∂

∂xi

(

√

g̃Khij ∂

∂xj

)

, (11)
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and g̃ = det (gij), gij and hij are inverse components of the first and second fun-
damental forms, respectively, and i, j = 1, 2, where x1 = x, x2 = t. Equation (3) is
called generalized shape equation.

Some of the subclasses of the surfaces can be derived from a variational principle
for a suitable E. These are given as: Minimal surfaces, E = 1, p = 0; Surfaces with
constant mean curvature, E = 1; Linear Weingarten surfaces, E = aH + b, where
a and b are some constants; Willmore surfaces, E = H2 [28], [29]; Surfaces that
solve the shape equation of lipid membrane, E = (H − c)2, where c is a constant

[18], [26]-[13]; Shape equation of closed lipid bilayer, E = (kc/2) (2H + c0)
2

+ k̄K,
where kc and k̄ are elastic constants, and c0 is the spontaneous curvature of the
lipid bilayer [16].

Definition 1.3. Surfaces that solve the equation

∇2H + aH3 + bH K = 0, (12)

are called Willmore-like surfaces, where a and b are arbitrary constants.

Remark 1. a = 2, b = −2 case corresponds to the Willmore surfaces which arise
from a variational problem. For other values of a and b Willmore-like surfaces
cannot be derived from a variational problem.

For compact 2-surfaces, the constant p in (2) may be different than zero, but for
noncompact surfaces we assume it to be zero. For the latter, asymptotic conditions
are required, so K goes to a constant and H goes to zero asymptotically. For
this purpose, we shall use the Euler-Lagrange equation (3) for surfaces obtained
by mKdV, HD equations and search for solutions (surfaces) of the Euler-Lagrange
equation [(3)].

The principal purpose of this paper is to find new classes of 2-surfaces using the
deformations of Lax equations for mKdV and HD equations and to obtain solutions
of the generalized shape equation (3) for polynomial Lagrange functions of the
curvatures H and K

E = aN0 HN + . . . + a11 H K + a21 H2 K + . . . + a01 K + ... (13)

For each N , we find the constants anl in terms of the parameters of the surface,
where n, l = 0, 1, 2, . . . and N = 3, 4, 5, . . .

2. 2-surfaces in R
3. In this section, in order to construct 2-surfaces in R

3, we use
Lie group SU(2) and its Lie algebra su(2) with basis ej = −i σj , j = 1, 2, 3, where
σj denote the usual Pauli sigma matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (14)

Define an inner product on su(2) as 〈X, Y 〉 = −(1/2) trace(XY ), for X , Y ∈su(2).

2.1. mKdV surfaces. Let u(x, t) satisfy the mKdV equation ut = u3x+(3/2)u2ux.
Substituting the travelling wave ansatz ut − α ux = 0 in the previous equation, we
get

u2x = αu − u3

2
, (15)
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where α is an arbitrary real constant and integration constant is taken to be zero.
(15) can be obtained from Lax pairs U and V , where

U =
i

2

(

λ −u
−u −λ

)

, (16)

V = − i

2







1

2
u2 − (α + αλ + λ2) (α + λ)u − iux

(α + λ)u + iux −1

2
u2 + (α + αλ + λ2)






, (17)

and λ is a spectral parameter.
In [23], we considered spectral parameter deformation and combination of spec-

tral and Gauge deformations. In this paper, we consider the mKdV surfaces arising
from deformations of parameters of the integrable equations’ solution.

Consider the one soliton solution of mKdV equation (15) as

u = k1 sech ξ, (18)

where α = k2
1/4, ξ = k1(k

2
1t + 4x)/8 + ξ0, ξ0 and k1 are arbitrary constants.

Remark 2. mKdV surfaces constructed by ξ0 deformation are sphere, where Gauss-
ian and mean curvatures are

K =
16λ2

k2
1µ2

, H = − 4λ

k1µ
. (19)

Here ξ0 and k1 are parameters of the solution which are arbitrary constants.

Another parameter of the solution is k1. It is also possible to use k1 parameter to
construct new mKdV surfaces. These classes of surfaces are given by the following
proposition.

Proposition 2. Let u, given by (18), satisfy the equation (15). The corresponding
su(2) valued Lax pairs U and V of the mKdV equation are given by (16) and (17),
respectively. su(2) valued matrices A and B are

A = − iµ

2

(

0 φ
φ 0

)

, B = − iµ

2

(

u φ (k2
1/4 + λ)φ − i φx

(k2
1/4 + λ)φ + i φx −u φ

)

, (20)

where A = µ (∂U/∂k1) , B = µ (∂V/∂k1), and φ = ∂ u/∂k1; k1 is a parameter of
the one soliton solution u, and µ is a constant. Then the surface S, generated by
U, V, A and B, has the following first and second fundamental forms (j, k = 1, 2)

(dsI)
2 ≡ gjk dxj dxk, (dsII)

2 ≡ hjk dxj dxk, (21)

where

g11 = (1/4)µ2φ2, g12 = g21 = (1/16)φ(2 k1 u + φ[k2
1 + 4 λ]), g22 = (1/64)µ2

(

4[k2
1 +

4 φ2]u2 +4 k1 (k2
1 −4)u φ+φ2

x +(k2
1 +4 λ)2 φ2 +4 k2

1(λ+1)2
)

, h11 = (1/16)∆ µ3 λφ2

(

k1[λ + 1] − 2 u φ
)

, h12 = (1/4)∆ µ3φ2
(

8 φxux +
[

k1(λ + 1) − 2uφ
][

2(2λ2 − u2) +

k2
1(λ + 1)

])

, h22 = (1/256)∆ µ3 φ
(

8 φx

[

2 k1 u ux + (k1 + 4 λ)(φux − u) + 4(uφ)t

]

+
[

k1(λ + 1)− 2 u φ
][

16 φxt + φ(k2
1 + 4 λ)(2[u2 + 2 λ] + k2

1 [λ + 1])− 4 k1 u(u2 − 2 λ)
])

,
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and after substitution u, given by (18), the corresponding Gaussian and mean cur-
vatures are

K =
1

µ2 η0 (4 η2
4 + η2

3)
2 Ql (sech ξ)

l
, H =

1

4 µ2 η
1/2
0 (4 η2

4 + η2
3)

3/2
Zm (sech ξ)

m
, (22)

where ηi, i = 0, . . . , 4, Zm, m = 1, . . . , 6, and Ql, l = 1, . . . , 7 are polynomial and
trigonometric functions of x and t. Explicit form of them can be found in [24].

2.2. The parameterized form of the four parameter family of mKdV sur-

faces. In this section, we find position vector, −→y = (y1(x, t), y2(x, t), y3(x, t)) , of
mKdV surfaces by using soliton solution of mKdV equation and solution of the Lax
equations for mKdV. Consider the one soliton solution of the mKdV equation

u = k1 sech ξ, ξ =
k1

8

(

k2
1 t + 4x

)

, (23)

where α = k2
1/4. The Lax pairs U and V are given by (16) and (17), respectively.

By using these and solution u of mKdV equation, given by (23), we solve the Lax
equations (5). By inserting Φ into the following equation

F = µ Φ−1 ∂Φ

∂k1
, (24)

solving the resultant equation, and writing F in the form F = −i(σ1y1+σ2y2+σ3y3),
we obtain a four parameter (k1, µ, A1, B1) family of surfaces parameterized by

y1 = − 1

(e2ξ + 1)
2

[

R10 eξ
(

η10 sin G2 + η11 cosG2

)

+R12 + R13

(

η6

[

e4ξ + 1
]

+ η7 e2ξ
)]

, (25)

y2 =
1

(e2ξ + 1)
2 R9 eξ

(

η11 sin G2 − η10 cosG2

)

, (26)

y3 = − 1

(e2ξ + 1)
2

[

R11 eξ
(

η10 sin G2 + η11 cosG2

)

−2 R10 +
R8

π

(

η12

[

e4ξ + 1
]

+ η13 e2ξ
)]

, (27)

where G2 and ηi, i = 5, . . . , 13 are polynomial functions of x and t, and Rj , j =
8, . . . 13 are constants in terms of µ, k1, e, π, A1, and B1. Explicit form of them
can be found in [24]. Thus the position vector −→y = (y1(x, t), y2(x, t), y3(x, t)) of the
surface is given by (25)-(27).

2.2.1. The Analysis of the Four Parameter Family of Surfaces.

Example 1. Taking k1 = −1/2, B1 = 0, and µ = 1 in (25)-(27), we get the surface
given by Fig. 1(a).

As ξ tends to ±∞, y1 and y2 approach zero, y3 approaches ∓∞. This can also
be seen in Fig. 1(a). For small values of x and t, the surface has a twisted shape
around a line.

Example 2. Taking k1 = 1/2, B1 = 0, and µ = 1 in (25)-(27), we get the surface
given by Fig. 1(b).

As ξ tends to ±∞, y1 and y2 approach zero, y3 approaches ∓∞.
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(a) (x, t) ∈ [−95, 95] × [−95, 95] (b) (x, t) ∈ [−60, 60] × [−60, 60]

Figure 1. mKdV surfaces.

3. 2-Surfaces in M3. In this section, we give a connection between integrable
equation, HD equation, and surfaces in M3. For the KdV case, this connection has
been studied in [11]. In this chapter Lie group G is SL(2, R) and the corresponding
Lie algebra g is sl(2, R) with basis ej , j = 1, 2, 3, given by

e1 =

(

1 0
0 −1

)

, e2 =

(

0 1
1 0

)

, e3 =

(

0 1
−1 0

)

. (28)

Define an inner product on sl(2, R) as 〈X, Y 〉 = (1/2) trace(XY ), for X ,Y ∈sl(2, R).

3.1. HD Surfaces from Spectral Deformations. Let u(x, t) satisfy the HD
equation

ut = −u3 u3x. (29)

Assuming the travelling wave ansatz ut −α ux = 0 in the previous equation, we get

u2x =
α

2

1

u
− C1, (30)

where α and C1 are arbitrary constants. Equation (29) can be obtained from sl(2, R)
valued Lax pairs U and V where

U =





0 1
λ2

u2
0



 , V = 2 λ2





ux −2 u

u2x − 2 λ2

u
−ux



 , (31)

were λ is a spectral constant. The Lax equations are given by (5), where the
integrability of these equations are guaranteed by the HD equation or the zero
curvature condition (4) for given U and V as (31). The following proposition gives
HD surfaces from spectral deformations.

Proposition 3. Let u satisfy the equation (29). The corresponding sl(2, R) valued
Lax pairs U and V of the HD equation are given by (31). sl(2, R) valued matrices
A and B are

A = 2 µ λ

(

0 0
1

u2
0

)

, B = 4 µ λ

(

ux −2 u

u2x − 4 λ

u
−ux

)

(32)
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where A = µ ∂U/∂λ, B = µ ∂V/∂λ, µ is a constant and λ is a spectral parameter.
Then the surface S, generated by U, V, A and B, has the following first and second
fundamental forms (j, k = 1, 2)

(dsI)
2 ≡ gjk dxj dxk − 16 µ2 λ2

(1

u
dx dt + [u2

x − 2 u u2x + 8 λ2]dt2
)

, (33)

(dsII)
2 ≡ hjk dxj dxk = −2 µ λ

u2

(

dx2 − 8 λ2 u dx dt (34)

+2 u2
[

2 u2 ux u3x + u3 u4x + 8 λ4
]

dt2
)

,

and Gaussian and mean curvatures, where x1 = x and x2 = t, are

K = − u2

8 µ2 λ2

(

2 ux u3x + u u4x

)

, H =
1

4 µ λ

(

u2
x − 2 u u2x + 4 λ2

)

. (35)

The following proposition gives Willmore-like HD surfaces.

Proposition 4. Let u satisfy u2
x = −α/u−2 C1 u+2 C2. Then the surface S, defined

in Proposition 3, is a Willmore-like surface, i.e. the Gaussian and mean curvatures
satisfy the equation (12), where a = −2, b = 6, C1 = 16 λ4/α, C2 = −6 λ2, and λ
is an arbitrary constant.

In order to study the HD surfaces arising from variational principle, it is enough
to know fundamental forms and curvatures for such surfaces. The following propo-
sition gives a class of the HD surfaces that solve the equation (3).

Proposition 5. Let u satisfy u2
x = −α/u − 2 C1 u + 2 C2. Then there are HD

surfaces, defined in Proposition 3, that satisfy the generalized shape equation (3)
when E is a polynomial function of H and K.

We have several examples:

Example 3.

Let deg(E) = N , then
i) for N = 3 : E = a1 H3 + a2 H2 + a3 H + a4 + a5 K + a6 K H,

a1 = −11 µ a2

30 λ
, a3 = −4 λa2

15 µ
, a6 =

14 µ a2

15 λ
, a4 = 0, C1 = p = 0, C2 = 2 λ

where λ 6= 0, µ, and a5 are arbitrary constants.
ii) for N = 4 : E = a1 H4 + a2 H3 + a3 H2 + a4 H + a5 + a6 K + a7 K H + a8 K2 +

a9 K H2,

a1 = − 1

64
(15 a8 + 34 a9) , a2 =

1

480 µ λ

(

λ2 [358 a9 − 7 a8] − 176 µ2 a3

)

,

a4 =
4 λ

15 µ3

(

λ2 [13 a8 + 8 a9] − µ2 a3

)

, a5 = −3 λ4

4 µ4
(3 a8 + 2 a9) ,

a7 =
1

120 µ λ

(

λ2 [359 a8 + 154 a9] + 112 µ2 a3

)

, C1 = p = 0, C2 = 2 λ,

where λ 6= 0, µ 6= 0, and a6 are arbitrary constants.
For general N ≥ 3, from the above examples, the polynomial function E takes the
form

E =

N
∑

n=0

Hn

⌊(N−n)/2⌋
∑

l=0

anlK
l,

where ⌊x⌋ denotes the greatest integer less than or equal to x and anl are constants.
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3.2. The Parameterized Form of the HD Surfaces. In order to find the posi-
tion vector −→y = (y1(x, t), y2(x, t), y3(x, t)) , of the HD surfaces for a given solution
of the HD equation and the corresponding Lax pairs, we use the similar technique
that we use in section 2. Let u = −(α/2) 181/3 ξ2/3, ξ = t+x/α, be a solution of the
HD equation, where α 6= 0 is a constant. We solved the Lax equations (Φx = UΦ
and Φt = V Φ) for given U, V and a solution u of the HD equation (29). By using
solutions of the Lax equations, Φ, we solve the following equation

F = µ Φ−1 ∂Φ

∂λ
, (36)

and we get the family of the surfaces which are parameterized by

y1 = ζ4

(

ζ5 B1 B2 + ζ6 A1 A2 +
1

2
ζ7 (A1 B2 + A2 B1)

)

, (37)

y2 =
ζ4

2

(

ζ5(B
2
2 − B2

1) + ζ6 (A2
2 − A2

1) + ζ7 (A2 B2 − A1 B1)
)

, (38)

y3 =
ζ4

2

(

ζ5(B
2
2 + B2

1) + ζ6 (A2
2 + A2

1) + ζ7 (A2 B2 + A1 B1)
)

, (39)

where ζi, i = 4, . . . , 7 are functions of x and t. Explicit form of them can be found
in [24].

Proposition 6. The HD surface, given by (37)-(39), is a quadratic Weingarten
surface, i.e.

3 µ2 H2 − 6 µ λH − 4 µ2 K + 3 λ2 = 0. (40)

4. Conclusion. We constructed 2-surfaces in R
3 and in M3 by using the soliton

surface technique. In R
3, we found the mKdV surfaces using deformation of pa-

rameters of solution for mKdV equation. In M3, we constructed the HD surfaces
using spectral deformation. We found new HD surfaces that solve the generalized
shape equation. Furthermore, we determined the parameterized form of the mKdV
and HD surfaces.
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[4] Ö. Ceyhan, A.S. Fokas, and M. Gürses, Deformations of Surfaces Associated with Integrable

Gauss-Minardi-Codazzi Equations, J. Math. Phys. 41 (2000), 2251-2270.
[5] J. Cieslinski, A Generalized Formula for Integrable Classes of Surfaces in Lie Algebraas, J.

Math. Phys. 38 (1997), 4255-4272.
[6] M. P. Do Carmo, “Differential Geometry of Curves and Surfaces,” Prentice-Hall, Inc., Engle-

wood Cliffs, NJ, 1976.
[7] L.P. Eisenhart, “A Treatise on the Differential Geometry of Curves and Surfaces,” Dover

Pub., Inc., New York, 1909.
[8] A.S. Fokas and I.M. Gelfand, Surfaces on Lie Groups, on Lie Algebras, and Their Integra-

bility, Commun. Math. Phys. 177 (1996), 203-220.
[9] A.S. Fokas, I.M. Gelfand, F. Finkel and Q.M. Liu , A Formula for Constructing Infinitely

Many Surfaces on Lie Algebras and Integrable Equations, Selecta Math., New Ser. 6 (2000),
347-375.
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