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Abstract. Territorial behavior is often found in nature. Coyotes and wolves

organize themselves around a den site and mark their territory to distinguish
their claimed region. Moorcroft et al. model the formation of territories and

spatial distributions of coyote packs and their markings in [33]. We modify

this ecological approach to simulate spatial gang dynamics in the Hollenbeck
policing division of eastern Los Angeles. We incorporate important geograph-

ical features from the region that would inhibit movement, such as rivers and

freeways. From the gang and marking densities created by this method, we
create a rivalry network from overlapping territories and compare the graph

to both the observed network and those constructed through other methods.

Data on the locations of where gang members have been observed is then used
to analyze the densities created by the model.

1. Introduction. Street gangs have a long history in Los Angeles [35, 46] and
are major contributors to violent acts in the region [17, 34, 36, 47, 38]. Gangs
compete to secure both instrumental (e.g., money, drugs, space) and expressive
(e.g., reputation, power) resources, often causing a partitioning of the city into
gang territories [43]. Disputes over spatial resources may lead to violence and acts
of retribution, augmenting or creating a rivalry between gangs [11, 44]. One common
method for a gang to mark its territory is through the use of graffiti [2, 10, 30]. Our
goal is to model the spatial behaviors for gangs and their taggings.
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One approach for modeling human behavior is through the framework of eco-
logical models. The ecological models for optimal foraging have been applied to
hunters and gatherers [20] and to people seeking information [40]. College drinking
patterns have also been modeled through an ecological approach [1]. Ecology has
been essential to epidemiological modeling of wildlife populations and diseases [26].
These models have in turn been applied to humans for not only infectious diseases,
but also to the social sciences through the spread of ideas [7] and political affiliations
[39]. Several models have recently been proposed to describe the territorial behavior
of species as diverse as wolves [6, 9, 28, 29, 50], coyotes [32, 33], killer wasps [12],
chimpanzees [49], foxes [18], and birds [25]. Some species, such as wolves, claim
spatial regions via scent marking or other means [37]. Using gang graffiti as a proxy
for scent marking, we can apply these ecological models to street gangs.

This paper examines the formation of gang territories and territorial markings by
adapting the approach given in [33] that is based on a system of partial differential
equations. Section 2 describes this approach for coyotes and the modifications made
to model street gangs. Section 3 provides information on Hollenbeck, the eastern
most policing division in the city of Los Angeles, which is the site of the case study
where this model is applied. The implementation details are given in Section 4,
and a description of the data sets are provided in Section 5. The results follow in
Section 6. Section 7 concludes the paper with a discussion of the model implications.

2. Modeling street gangs. This paper develops a model to describe the equi-
librium densities of gangs and gang graffiti. Gang graffiti marks the boundaries
of contested regions claimed by multiple gangs, which may make these areas more
prone to violence. Gang territories are dynamic and the boundaries change over
time with the emergence of new gangs and other gangs collapse. The creation of
a flexible model incorporating these fluctuations allows for the testing of theories
while investigating system dynamics given certain changes [13, 19].

2.1. Existing gang models. Several models have recently been proposed for an-
alyzing various gang behaviors. Retaliatory behavior among gangs has been simu-
lated via self-exciting point processes [14, 41]. These methods focus on the temporal
aspect of gang violence. Using this gang characteristic of retaliation, attempts have
been made to fill in the missing data of which gang is responsible for a crime [21, 42].
From a different perspective, the authors of [4] use an approach from epidemiology
to simulate membership in gangs.

A recent bottom-up approach examines the formation of rivalries. In [22], the
authors propose an agent-based model that is coupled to a rivalry network. A node
of the network represents a geographic position that is the central location to a
gang’s activities known as a set space [38, 45]. An edge in the network is present
if there is a rivalry between the two gangs. In this stochastic model, agents move
about the city and interact with members of other gangs. Once two gang members
of different gangs cross paths, the weight of the edge between their two respective
nodes is increased. This edge weight directly impacts the directional decisions the
agents make, which is biased towards their home set space and away from rival
gangs’ set spaces and selected from a von Mises distribution [24]. Additionally,
geographic boundaries in the region are incorporated into this model to restrict
movement across rivers and large freeways. The model we propose here will include
these geographic boundaries and compare the resulting rivalry network with those
obtained in [22].
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The Lotka-Volterra competition model has been used to analyze the creation of
territorial boundaries between two gangs in [8]. Through this approach, the authors
examined the locations of violent interactions with respect to the theoretical bound-
ary between the two gangs and concluded that violence typically clusters about this
dividing curve. Another model uses graffiti as the mechanism for interactions be-
tween gang members and analyzes the circumstances under which territories are
formed [5]. Both of these methods focus only on situations with two gangs. In
order to fully examine a system of twenty-nine active gangs in Hollenbeck, we will
consider another approach taken from ecology.

2.2. Ecological territorial models. Many species exhibit territorial behavior,
where individuals and/or groups are willing to defend space they currently hold
from incursions by members of the same species (intraspecific competition) or other
species (interspecific competition). These territorial behaviors are also exempli-
fied by street gangs which use violence to control local drug markets or simply
defend their neighborhood from outsiders. We consider existing ecological territo-
rial methods to model these gang territorial behaviors. The paper [23] provides a
review of partial differential equation models proposed for studying the spatial dis-
tributions of species. Some approaches include diffusion models, diffusion with drift
and convection models, biased random motion models, models with aggregation or
repulsion that depends on the current organism density, and models that depend on
environmental features. Additionally, reaction-diffusion and predator-prey models
incorporate competition into the system.

Two competing groups might never physically meet, yet still have defined ter-
ritories. Coyotes and wolves are animals that exhibit territorial behavior through
raised leg urination. When an individual comes in contact with a marking from
a different pack, the animal increases its own urination and may move towards its
home den located on the interior of its territory [28]. This avoidance of markings
has been incorporated into wolf [6, 9, 28, 29, 50] and coyote models [32, 33] through
a coupled system of partial differential equations for both the pack densities and
the marking densities. These mechanistic home range models have recently been
connected to models of resource selection analysis (RSA) [31]. One of the models
of [33] includes a mechanism to avoid areas where the terrain is steep, and it is this
model that we will modify to examine the spatial behaviors of street gangs.

2.3. The proposed gang behavioral model. Traditional gangs and territorial
animals have distinctly claimed areas that are well-established [27]. They use mark-
ings to inform members of both their own group as well as other groups of territorial
boundaries. Individuals may respond to markings of other groups by increasing their
own marking density and by biasing their movement towards their respective den
site for animals or set space for gangs. A gang’s set space is the central location
to the gang’s activities [38, 45]. These behavioral characteristics and geographical
considerations are incorporated into the “steep terrain avoidance plus conspecific
avoidance (STA+CA)” model of [33] for coyotes. This model solves the following
non-dimensionalized system to steady-state:

du(i)

dt
= ∆u(i) −∇ ·

βxiu(i)
n∑
j 6=i

p(j)

+∇ ·
[
αu(i)∇z

]
(1)
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dp(i)

dt
= u(i)

1 +m

n∑
j 6=i

p(j)

− p(i), (2)

where for a given pack i, u(i)(x, y) is the expected population density, p(i)(x, y) is
the expected marking density, and xi is the unit vector to the home den site from
the current location. The parameters β, m, and α represent the strengths to avoid
markings, to increase one’s own markings, and to avoid steep terrain, respectively.
This system also has the boundary conditions on ∂Ω

0 =

∇u(i) − βxiu(i)
n∑
j 6=i

p(j) + αu(i)∇z

 · −→n , (3)

where −→n is the outward unit normal vector.
The system in Equations (1) and (2) models population densities and marking

densities for a set of coyote packs. We now modify the approach for street gangs
by letting u(i)(x, y) be the expected gang density, p(i)(x, y) be the expected graffiti
density, and xi be the unit vector to the set space of gang i from the current
location. In this system, the term ∆u(i) describes random motion of individuals.
Since gangs typically avoid the territories of other gangs [3, 30] unless they are
conducting a violent raid, they are more likely to return towards their set space
when confronted by another gang’s tags. This behavior is represented by the term

−∇·
[
βxiu

(i)
∑n
j 6=i p

(j)
]
, where individuals that come in contact with any markings

that are not of their own gang move in the direction towards home, xi. Equation (2)
describes the process by which individuals increase their production of markings
after discovering another gang’s markings.

The z(x, y) in the model is the elevation of the terrain for coyotes, but we use
this term to incorporate other spatial features. We first determine geographical
landmarks that could inhibit movement across them, such as rivers, freeways, and
major roads. These features are not impassible, but there are limited bridges and
underpasses available. Let Ω ⊂ R2 be the set of points where there is a landmark.
Consider the minimum Euclidean distance to the set Ω,

d(x, y) = min
(x0,y0)∈Ω

{√
(x− x0)

2
+ (y − y0)

2

}
.

We then define z(x, y) to be

z(x, y) = 1− tanh
(
d(x, y)2

)
.

This gives a “steep terrain” that gang members will avoid. Geography is therefore
incorporated into the movement dynamics through the final term in Equation (1),
∇ ·
[
αu(i)∇z

]
, where each landmark is treated equally.

This partial differential equation approach has many features similar to the
agent-based model proposed in [22]. Both models incorporate the geography as
semi-permeable boundaries. Additionally, individuals engage in random movement,
but have a bias towards their home set space. In the supplementary material for
[33], the authors derive the model given in Equations (1) and (2) by using a von
Mises distribution for the advection term. Thus, both models utilize the von Mises
distribution to generate directionally biased motion. One major difference between
the two methods is that the agent-based approach is stochastic, whereas the pro-
posed model is deterministic with a derivation based on a stochastic process. Due
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to the similarities in these models, we will also use Hollenbeck as the case study
and compare the results to those given in [22].

3. Street gangs in Hollenbeck. The city of Los Angeles is plagued by gang
violence. Hollenbeck, the eastern most division of the Los Angeles Police Depart-
ment, is home to twenty-nine active Latino street gangs in only 15.2 square miles
[38, 46]. Due to the geography of the area, the rivalries among the gangs in this
region are generally restricted to Hollenbeck. Most of the rivalries and disputes
among these gangs is linked to neighborhood-based territoriality rather than drugs
or other conflicts.

To examine the structure of the rivalries in Hollenbeck, we view a graph that
is embedded in space with nodes representing the set spaces of the gangs. If a
rivalry exists between two gangs, then an edge is present between the two respective
nodes. Among the twenty-nine gangs in Hollenbeck, there are sixty-nine observed
rivalries. This observed network has been examined in [22, 38, 46]. The authors of
these papers argue that the structure of this network is highly dependent on the
geography of the region and the highways and rivers that pass through the area.
Five major freeways, I-5, I-10, I-710, CA-60, and US-101, divide Hollenbeck into
many sections. Figure 1 shows the spatially embedded rivalry network and the
features that partition the region. It is clear that these physical boundaries impact
the rivalry structure by limiting the number of rivalries between gangs in separate
sections.

Figure 1. Set spaces embedded in Hollenbeck (Left) and the corre-
sponding observed rivalry network (Right). Each solid triangle on the
left and solid circle on the right gives the location of a gang’s set space.
The faint curves (Left) show the major roads and rivers that pass through
the region, impacting the rivalry structure. The policing division bound-
ary is also included as the bottom and right boundaries. The observed
network from [38] is displayed on the right, where an edge between two
gangs indicates an existing rivalry between the gangs.
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4. Implementation details. For the G gangs, the model consists of a coupled
system with 2G differential equations. We implemented this system by using finite
differences and solving until steady-state. For each time step ∆t, we loop through
all of the gangs, updating first the u(k) and then p(k). For initialization, u(k) is set
to be zero everywhere except at the location of the kth set space, where it has the
value one. Alternatively, p(k) is initialized to be 1

NM everywhere, where the grid is

N ×M . The discretized equation for the interior of u(k) at time n+ 1 is given by

u
(k),n+1
i,j − u(k),n

i,j

∆t
=

1

(∆x)2

(
u

(k),n
i+1,j − 2u

(k),n
i,j + u

(k),n
i−1,j

)
+

1

(∆y)2

(
u

(k),n
i,j+1 − 2u

(k),n
i,j + u

(k),n
i,j−1

)
− β

2∆x

u(k),n
i+1,j x

(k)
i+1,j

∑
l 6=k

p
(l),n
i+1,j − u

(k),n
i−1,j x

(k)
i−1,j

∑
l 6=k

p
(l),n
i−1,j


− β

2∆y

u(k),n
i,j+1 y

(k)
i,j+1

∑
l 6=k

p
(l),n
i,j+1 − u

(k),n
i,j−1 y

(k)
i,j−1

∑
l 6=k

p
(l),n
i,j−1


+

α

∆x

(
u

(k),n
i+1,j ∇x zi+1,j − u(k),n

i,j ∇x zi,j
)

+
α

∆y

(
u

(k),n
i,j+1 ∇y zi,j+1 − u(k),n

i,j ∇y zi,j
)
.

The boundary of u(k) is updated using first order Neumann boundary conditions.
Given this update of u(k), we then update both the interior and boundary of p(k)

as

p
(k),n+1
i,j − p(k),n

i,j

∆t
= u

(k),n+1
i,j

1 +m
∑
l 6=k

p
(l),n
i,j

− p(k),n+1
i,j . (4)

After this update, we ensure that p(k) is still a density that sums to one. After
obtaining our final estimates for the gang and marking densities, we determine that
a rivalry exists between two gangs if the regions where densities are non-negligible
sufficiently overlap.

5. The data sets. In order to test the algorithm, we will use two different data
sets. The first covers the years 1999 to 2002 and gives the locations of violence
between two gangs. We only use the 340 events where both the suspect and victim
gang are known and both are also in the set of twenty-nine Hollenbeck gangs. In
[8], the authors compared the locations of events relative to the theoretical midline
boundary between gangs. They concluded that violent interactions frequently clus-
ter about this line. From this analysis, we should expect a higher density of violent
events near the boundaries of territories where there is an increase in graffiti. For
our model, this is where the markings, p(i), have a high density. Thus, we will
compare our marking densities to this set of violence data.

The second set of data we have to evaluate our model gives the locations of where
known or suspected gang members were stopped by the police. In such encounters,
the officer fills out a Field Interview (FI) card, listing information about where
the interaction took place and all individuals involved. These encounters are not
initiated by violent events, and so we assume that these data are a sample of the
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gang densities, u(i). This data set of 1,079 events, covering the year of 2009, will
be referred to as FI data. Both data sets can be seen in Figure 2. Due to the large
number of gangs, only the aggregated data will be displayed here.

Figure 2. Violence and Field Interview data in Hollenbeck. The set
spaces are given by solid triangles in both images. The gang violence
data (Left) and Field Interview data (Right) are given by solid circles.

There is a possibility of errors in any data set, including inaccuracies, incom-
pleteness, under-reporting of events, and bias [13]. Furthermore, for the data sets
we are using, we should be cautious in the expectation that p(i) fully approxi-
mates the violence data and u(i) fully approximates the FI data. The nature of
the sampling frame for the FI data is not perfectly understood, and there may be
significant under-reporting of all but the most serious violent crimes. It should be
noted that while not every encounter may produce an FI, law enforcement needs
to continually document gang members activity with their gang and fellow affili-
ates for prosecution in future crimes. Regularly documenting activity, especially
individuals loitering together, showcases this gang acuity to criminal justice actors.
Additionally, it is reasonable to assume that a large number of these events can be
predicted by the densities obtained by the model.

Another potential issue to consider is the difference in time frames for each set
of data. The locations of the set spaces were taken from [38] published in 2010.
Some set spaces may have moved during the eight years after the violence data was
collected. As cities are ever changing, gangs may have adapted to the altered envi-
ronments. For example, one housing area was redeveloped, forcing several Cuatro
Flats, TMC, and Primera Flats gang members to relocate. This caused these gangs
to ultimately have new set spaces. For simplicity, we will only use the original set
space in our model implementation.
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6. Results. With this implementation of the model for the Hollenbeck gangs, we
optimize the parameters with respect to the accuracy metric for the rivalry net-
work, defined in Equation (5) of Section 6.1. Additionally, we must ensure that
the parameter m is large enough to produce a marking density that is not nearly
identical to the gang density. Listed in Table 1 are the parameters used for this
analysis.

Parameter Value

m 100
β 1
α 1
∆t 0.001

Table 1. Parameter choices for the ecological territorial model.

We first compare our simulated network with that of the agent-based approach
of [22] in Section 6.1. From here, we investigate the resulting gang and marking
densities in Section 6.2. Given these densities, Section 6.3 estimates gang terri-
tory locations. One standard method for partitioning a region is through Voronoi
diagrams, which we further discuss in Section 6.4. We then use the estimated terri-
tories to investigate the relationship with the two data sets in Section 6.5. Finally,
we examine pairs of rival gangs and the locations of events with respect to the
theoretical territories in Sections 6.6 and 6.7.

6.1. Rivalry networks. To create a rivalry network from the ecological territorial
model, we must determine what quantifies a rivalry. If the violence among gangs
in Hollenbeck is primarily attributed to territorial issues, then we would expect a
rivalry to exist if the densities of two gangs sufficiently overlap. We thus threshold
the densities to produce an approximate territory, and then find the overlapping area
between pairs of territories. Since there are 69 empirically known rivalries among
the gangs in Hollenbeck, we select the top 69 area pairs to construct a network. The
resulting rivalry network obtained from the simulation is given in Figure 3, together
with the observed network and the Simulated Biased Lèvy walk Network (SBLN)
obtained in [22].

We notice that the ecological territorial model correctly identifies 45 of the 69
edges in the observed network. Additionally, this simulated network has similar
graph properties with both of the other networks. To better quantify this similarity,
we examine a few graph metrics that were previously used in [22].

We would like to inspect the accuracy of the simulated network. Initially, we
calculate the number of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). An edge is considered a true positive when it is
correctly identified as an existing edge in the model and is present in the observed
network, and it is a true negative when it is correctly identified as not being an edge.
Alternatively, an edge is marked as a false positive if the simulation identifies it as
an edge when it is not present in the observed network, and it is a false negative if
the simulation fails to label a true rivalry as an edge. From these we calculate the
accuracy score

ACC =
TP + TN

FP + FN + TP + TN
. (5)
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Figure 3. Comparison of rivalry networks. Each node in the network
represents a gang’s set space. An edge in the graph exists if there is
a rivalry between the two gangs. The observed network (Left) is plot-
ted with both the SBLN network from [22] (Middle) and the ecological
territorial model from this paper (Right).

This value should fall between 0 and 1, with higher values indicating a more accurate
graph. These values are presented in Table 2.

TP TN FP FN ACC

Hegemann et al. SBLN 50 320 17 19 0.9113
Ecological Territorial Model 45 313 24 24 0.8818

Table 2. Accuracy measures for the Hegemann et al. SBLN model
and the ecological territorial model.

While these accuracy measures are important, we would also like our rivalry
network to have similar graph properties as the observed network. For example,
the number of rivals that a gang has should be approximately the same in the
simulation. Thus, we investigate features of the network related to the degree of
a node d(i), representing the number of rivals of a gang i. Three measures we use
are the graph density, degree variance, and Freeman’s centrality measure. Given G
gangs, these are defined in [16, 48] as

Density =
1

G(G− 1)

G∑
i=1

d(i),

Degree Variance =
1

G

G∑
i=1

d(i)−

 1

G

G∑
j=1

d(j)

2

,
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Centrality =
1

(G− 1)(G− 2)

G∑
i=1

[(
max
j
d(j)

)
− d(i)

]
.

The density of the graph is a scalar multiple of the average degree. Thus, if two
graphs have the same number of edges, then they will have the same density. The
degree variance provides information on the spread of the degrees. Thus, a larger
degree variance indicates a wider range of degrees, which translates to a larger
spread in the number of rivals of each gang. The centrality measures whether there
are key gangs that are more connected than the rest, indicating they are more central
to the network. If all gangs have the same degree, i.e. no gang is more influential to
the network, then the centrality measure would be zero. Alternatively, if one gang
is connected to every other gang, and these are the only edges in the graph, then
the network would have a high centrality measure.

These graph shape measures for the observed network, the Hegemann et al.
SBLN network, and the ecological territorial model network are shown in Table 3.
We note that the three networks have close values for the three metrics.

Density Degree Variance Centrality

Observed Network 0.16995 4.32105 0.20106
Hegemann et al. SBLN 0.16503 3.54578 0.16799

Ecological Territorial Model 0.16995 5.70036 0.16270

Table 3. Graph metrics comparing the observed network with the
Hegemann et al. SBLN model and the ecological territorial model.

While it is of interest to compare the rivalry network from the ecological territo-
rial model to the observed network and the ones existing in the literature, we must
also recognize that the method for obtaining the rivalry network from overlapping
densities has limitations. More specifically, the edges that cross boundaries in the
upper portion of the region are absent. This is expected since the model limits the
smoothing of the gang densities across these boundaries. Thus, we do not antici-
pate much overlap in the territories of gangs in separate regions. Hence, we should
examine other features of the model to determine the effectiveness of the model.

6.2. Marking and gang densities. Modeled gang and marking densities display
some promising features. First, the gang densities u(i) remain centrally located
about the known set spaces, with minimal overlap between gangs. Geographic
boundaries limit the spread of gang density. Marking densities are highest between
adjacent gangs that have a relatively small distance between them. Otherwise, the
marking densities mimic the gang densities. This is expected as the steady-state
solution of Equation (2) is given by

p(i) = u(i)

1 +m

n∑
j 6=i

p(j)

 (6)

The plots of all gang and marking densities are provided together in Figure 4.
To better demonstrate the impact of the semi-permeable boundaries that repre-

sent the major roads and the river, the gang density for a central gang is shown
in Figure 5. The set space for this particular gang is situated between two major
freeways. To illustrate the impact of the southern boundary, we view the density
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Figure 4. Simulated gang (Left) and marking (Right) densities in Hol-
lenbeck. The densities for all of the gangs are plotted together. Red
indicates a higher density and blue a lower density. The gang densities
demonstrate the formation of territories and the impact of boundaries
within the region. The marking densities are the highest between two
close set spaces. Otherwise, the marking densities are similar to the gang
densities.

facing East. Notice the dramatic drop in density over the boundary. Additionally,
we see that some density still flows beyond the freeway as expected, since movement
is not prohibited across boundaries, only discouraged.

Figure 5. Impact of boundary on gang densities. The left figure shows
the location of the set space for the gang of interest, represented by the
dot situated between major roads. The eye symbol (Left) shows the lat-
eral view for this gang’s approximated density (Right). To demonstrate
the impact of the southern boundary, the density is viewed facing East.
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6.3. Territories. The ability to approximate gang territories is a desirable feature
of this model. To do this, we classify a point (x, y) in space as belonging to the
territory of gang i if

u(i)(x, y) > u(j)(x, y) for all j 6= i

u(i)(x, y) > δ.

Using this thresholding with δ, we limit the size of the territories so they do not
cover the entire region. We took δ = 0.001. The case where δ = 0 is discussed in
Section 6.4. The resulting territories are shown together in Figure 6. Although

Figure 6. Estimated gang territories. The semi-permeable boundaries
of the model and the county line are plotted over the territories in white.

the semi-permeable boundaries highly influence the gang densities, some territory
plots seem to extend beyond these boundaries. This is particularly evident for the
southern boundary of the gang plotted in Figure 5.

6.4. Voronoi diagrams. Given a set of points, a Voronoi diagram partitions the
area of interest into smaller regions that each contain only one of the points [15].
For a point xA, we consider every pair (xA, xB) where A 6= B. We then construct
a line between them that is equidistant to both points. After completing this for
each point xB , we take the resulting polygon that contains xA. This is repeated
for all points, decomposing the space into smaller regions. We compare the Voronoi
diagram obtained from using the set spaces to the territories constructed with the
ecological territorial model. We obtain interesting results if we consider δ = 0
instead of δ = 0.001 (i.e. no thresholding of the densities). Figure 7 overlays the
partitioning line segments of the Voronoi diagram on the constructed territories
with no thresholding. We notice that they align almost exactly.

For comparison, we do a simple approximation to the gang densities by using a
Gaussian distribution centered at the set space. We used the parameter σ = 3 for
the standard deviation of the distribution. Using the same technique for determining
territories as above, we created a territory plot with no thresholding and plotted
the Voronoi diagram over it as well. This is also shown in Figure 7. The boundaries
of the territories match up exactly with the Voronoi diagram.
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Figure 7. Voronoi plots compared to simulated territories. In both
images, the set spaces for the gangs are represented by the solid circle.
The solid lines give the Voronoi diagram for the region with input of
the set spaces. The shaded regions provide the estimated gang terri-
tories with a Gaussian distribution for the gang densities (Right) and

the u(k) gang densities obtained from the ecological territorial model
(Left). Notice that the Gaussian distribution territories line up directly
with the Voronoi plot, and the ecological territorial model only differs
significantly on the far right portion of the region.

Both territory plots of Figure 7 and the Voronoi diagram produce a similar
partitioning of the region. This suggests that the territories created using the
ecological territorial model produces territories similar to using a standard normal
distribution about the set space. However, we note that the normal distributions of
separate gangs has significantly more overlap than the ecological territorial model
gang densities. This does not show in these images as we only indicate which gang
has a higher density here.

6.5. Comparison of model densities with data. As discussed in Section 5, we
have two data sets with which we will compare our model output. The FI data
provides the locations of where individuals have been stopped by the police. We
assume this to be a reasonable sample of the gang densities. Thus, we plot the
FI data over the gang densities in Figure 8. Additionally, we have violence data
for interactions between gangs. These events are most likely to occur in locations
where the marking density is high. Therefore, we plot this data over the marking
densities in Figure 8.

To see how well the model fits the data, we examine the Akaike information
criterion (AIC), given by

AIC = 2k − 2 ln(L), (7)

where L is the likelihood function and k is the number of model parameters. The
results are given in Table 4. In addition to the AIC values for the ecological territo-
rial model, we examine the Gaussian distribution model. We find that the ecological
territorial model performs better than the Gaussian distribution model when σ = 3,
the standard deviation used in Figure 7. We optimized the σ to give the best AIC
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Figure 8. Data points and the simulated densities. The gang densities
and the Field Interview data are plotted together (Left), and the mark-
ing densities are given with the violence data (Right). Here, the densities
are provided as the background gray-scale image with whiter colors rep-
resenting higher values. In the Field Interview data image (Left), the
green dots are for individuals in their own theoretical territory, the red
dots are for individuals in their rival gang’s theoretical territory, and the
blue dots are for the other cases.

measure, resulting in a value of σ = 11.5. However, theoretical territory plots for
this value resulted in gangs having set spaces in other gangs’ theoretical territories.
This is an undesirable property, which is why the image is not included in the paper,
but we include the AIC value in the table for comparison.

Method Data Set AIC

Ecological Territorial Model FI Data 31150
Gaussian Distribution Model (σ = 3) FI Data 41512
Gaussian Distribution Model (σ = 11.5) FI Data 18207

Ecological Territorial Model Violence Data 10526

Table 4. Akaike information criterion values for the ecological terri-
torial model and the Gaussian distribution model. For the Gaussian
distributions, we use σ = 3 as in Section 6.4 and σ = 11.5. The lat-
ter value gives the best AIC value, but creates territories that does not
contain the set spaces for some gangs. Lower AIC values are desired.

Overall, we notice some interesting properties of the locations of the individuals
in the FI data. Figure 8 plotted these data in different colors to correspond to the
various cases. In particular, green dots represent gang members that are located in
their own theoretical territory as estimated in Figure 6. The red dots show gang
members located in a rival gang’s theoretical territory, and the blue dots represent
individuals that are neither in their own territory nor a rival gang’s territory. Here,
we determine a rival gang from the observed rivalry network. To help examine the
individual cases, we plot them separately in Figure 9. We notice that the data
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Figure 9. Field Interview data plotted over the gang densities deter-
mined by the ecological territorial model. The gang members in their
own theoretical territories (Left), the gang members in their rival’s the-
oretical territory (Middle), and the other cases (Right) are plotted here.
A dot represents a location where a gang member was found. The gray-
scale image in the background shows the gang densities estimated by the
ecological territorial model.

points corresponding to locations where the gang members are not in their own
theoretical territory are more likely to occur in areas near the boundaries of other
gangs’ theoretical territories. Perhaps these individuals were passing through the
region by slipping between territories.

We highlight the FI data for three individual gangs in Figure 10. We notice
that the densities visually indicate where to find the majority of the gang members.
Instances where the individuals are not in the general vicinity of the home territory
often occur near the major roads.

Figure 10. Field Interview data for three individual gangs. The red
dots indicate the position of where a gang member was located. The
gray-scale image provides the gang’s density information estimated by
the ecological territorial model.

Next, we examine the violence data and how it compares to the theoretical
marking densities produced by the model. Table 4 provides the AIC value for the
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violence data. Since we do not have another model to compare this with, we instead
flag a certain portion of the city and find how many events occurred in this region.
More specifically, we take all points such that for any i,

p(i)(x, y) > γ ·max
j,x,y

(
p(j)(x, y)

)
. (8)

We took γ to be 0.2, 0.1, and 0.05. The flagged regions are shown in Figure 11, and
more information on the results are provided in Table 5. By flagging less than 14%
of the cells, we predict more than half of the data.

Figure 11. Violence data compared to flagged regions of the city.
From left to right, we have γ = 0.2, 0.1, 0.05. The red dots indicate loca-
tions of violence between two gangs. The white regions are the flagged
cells of the marking densities where we expect the events are more likely
to occur.

γ Percent of City Flagged Percent of Violence Data Predicted

0.2 5.02% 20.61%
0.1 13.94% 50.91%
0.05 22.46% 71.21%

Table 5. Proportion of data predicted given a flagged region of the city.

6.6. Rival gang territories and events. Given approximate territories for gangs,
we can investigate the locations of events with respect to these regions. Figure 12
gives the theoretical territories of three sets of rival gangs and the locations of the
known violent interactions between them. Since we have information about which
gang is the suspect and which is the victim, we illustrate which gang is the victim
by matching the interior color of the marker with the territory color. In these
three rivalries, we notice that all events occur near the boundaries of the theoretical
territories. Events slightly to the interior of the theoretical territory boundary
correspond with victim gangs in their own territory.

Sometimes there exists a rivalry between gangs of varying sizes. One such pair
is illustrated in Figure 13, with one gang significantly larger than the other. Coun-
terintuitively, the gang with the black set space is the larger gang and has a much
greater number of events where it is the victim. We also notice that the smaller
gang is only the victim on the boundary of the larger gang’s theoretical territory
or on the interior of its own theoretical territory. Since this data was recorded,



ADAPTED ECOLOGICAL MODEL TO STREET GANGS 3239

Figure 12. Territories and events of rival gangs. The three plots rep-
resent three pairs of rival gangs and the violent interactions between
them. The interior color of the markers (circles and squares) indicates
which gang is the victim by matching the color of its theoretical territory.
All events occur near the boundaries of the territories.

the smaller gang collapsed after a key gang member was killed. Thus, the smaller
number of attacks by the larger gang may have had more impact than the larger
number made by the smaller gang.

Figure 13. A rival pair of gangs with different sizes. The larger gang,
whose theoretical territory is in black, is significantly larger than the
smaller gang. The smaller gang is only the victim on the boundary of
the larger gang’s territory or on the interior of its own territory.

6.7. Suspect versus victim. In the previous section, we noticed a pattern where
the locations of events occur with respect to theoretical territory boundaries. Fig-
ure 14 shows six pairs of rival gangs and where their violent interactions occurred.
We notice a trend where the events typically fall either near the boundary of the
approximated territories of either gang, on the interior of the victim’s territory, or
are far from either theoretical territory.

With this observation, we consider the location of events with respect to the
boundaries of the approximate territories for both the suspect and the victim gangs.
Previously, the authors of [8] investigated the positioning of the events with respect
to a boundary line between gangs, equidistant to both set spaces. With the theoret-
ical boundaries from the ecological territorial model, we are able to further analyze
this data with respect to all boundaries. Given the victim gang’s theoretical terri-
tory, we find the distance from an event to the territory boundary. We let this value
be negative if the event occurs in the victim’s territory and positive if it is outside.
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Figure 14. Rival gang territories and the events between them. The
victim’s gang’s theoretical territory color matches the interior of the
marker. The majority of events occur near the approximate territory
boundaries, on the interior of the victim’s territory, or away from both

territories.

A histogram of these distances is provided in Figure 15, where one unit is equivalent
to 0.1 km. We see that the events strongly cluster near the boundary of the victim.

Figure 15. Histogram of the distance of an event to the boundary
of the victim’s theoretical territory. Negative values indicate the event
occurred on the interior of the victim’s territory, and positive values are
for events on the exterior of the region. The distance is the number of
grid units to the closest boundary point. 1 unit = 0.1 km.
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We also note that the distribution is slightly skewed to have a larger number of
events just interior to the victim’s territory. This agrees with our observation in
Figure 14.

Since the rival gangs are not necessarily adjacent to each other, we also repeat
this analysis for the location of events with respect to the suspect’s theoretical
territory. Again, negative values indicate the event occurs on the interior of the
suspect’s territory, and positive values for the outside. The histogram is included
in Figure 16. From this figure, we observe that the majority of events occur near

Figure 16. Histogram of the distance of an event to the boundary of
the suspect’s theoretical territory. Negative values indicate the event
occurred on the interior of the suspect’s territory, and positive values
are for events on the exterior of the region. The distance is the number
of grid units to the closest boundary point. 1 unit = 0.1 km.

the boundary of the suspect’s territory, but skewed to the exterior of the region.
Quantitatively, we find 24.7% of the events occur within three grid units of the

theoretical boundaries of both suspect and victim gangs. Additionally, 66.8% of the
events occur within three grid units of either the suspect or victim gang’s territory
boundary.

7. Discussion. Using the framework of the coyote model proposed in [33], we
formulated a model for street gang spatial behavior. This model was able to in-
corporate spatial features of the region that limit the movement individuals across
these semi-permeable boundaries. For each gang, the model produced a gang den-
sity and marking density, indicating where gang members are expected to be and
where their tags are most likely to be found.

As a first approach to evaluating our model, we compared the rivalry network
from our model to the observed network and the Hegemann et al. SBLN network.
While our model’s network gave similar metric values, it did not outperform the
SBLN network. This is due to the fact that we constructed the rivalry network
from overlapping gang densities, which are discouraged from spreading beyond the
semi-permeable boundaries encoded in the model. Thus, rivalries that cross these
boundaries are not likely to be captured by the method we used to produce a



3242 SMITH, BERTOZZI, BRANTINGHAM, TITA AND VALASIK

network. However, this method is able to provide more information than just a
rivalry network. In particular, it can be used to approximate gang territories and
the locations of violent interactions.

From the gang densities produced by the model, we approximated gang terri-
tories by classifying a point based on which gang has the highest density at that
location. Without any thresholding, the resulting territory plot closely approx-
imates a Voronoi diagram. With thresholding, the resulting territory plots give
reasonable estimates for each gang’s turf.

By flagging the cells with the highest theoretical marking densities, we were
able to identify the majority of the violent events with a small portion of the city.
Additionally, we were able to identify interesting behaviors of rival gangs. Events
were more likely to occur in the interior of the victim gang’s theoretical territory
or on the boundary of either the victim or suspect gang’s theoretical territory.

While comparing the gang densities to the FI data, we found the gang members
were often not in the general vicinity of their approximated home territory. These
individuals were frequently traveling on the boundaries of other gang’s territories.
Despite this, we demonstrated with three gangs that we were still able to give a
good density estimate to the location of gang members.

As a next step in this modeling approach, we would like to include the gang
sizes in the model. We would expect gangs with more individuals to produce more
taggings and require more space. Additionally, we would like to incorporate other
features that might impact the territory locations, such as police stations or multiple
set spaces.
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