## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

NHM

Previous experimental studies of spontaneous imbibition on chalk core plugs have shown that seawater
may change the wettability in the direction of more water-wet conditions in chalk reservoirs.
One possible explanation for this wettability alteration is that various
ions in the water phase (sulphate, calcium, magnesium, etc.) enter the
formation water due to molecular diffusion.
This creates a non-equilibrium state in the pore
space that results in chemical reactions in the aqueous phase as well as
possible water-rock interaction in terms of dissolution/precipitation of minerals and/or changes in surface charge.
In turn, this paves the way for changes in the wetting
state of the porous media in question.
The purpose of this paper is to put together a novel mathematical model
that allows for systematic investigations, relevant for
laboratory experiments, of the
interplay between
(i) two-phase water-oil flow (pressure driven and/or capillary driven);
(ii) aqueous chemistry and water-rock interaction;
(iii) dynamic wettability alteration due to water-rock interaction.

In particular, we explore in detail a 1D version of the model relevant for spontaneous imbibition experiments where wettability alteration has been linked to dissolution of calcite. Dynamic wettability alteration is built into the model by defining relative permeability and capillary pressure curves as an interpolation of two sets of end point curves corresponding to mixed-wet and water-wet conditions. This interpolation depends on the dissolution of calcite in such a way that when no dissolution has taken place, mixed-wet conditions prevail. However, gradually there is a shift towards more water-wet conditions at the places in the core where dissolution of calcite takes place. A striking feature reflected by the experimental data found in the literature is that the steady state level of oil recovery, for a fixed temperature, depends directly on the brine composition. We demonstrate that the proposed model naturally can explain this behavior by relating the wettability change to changes in the mineral composition due to dissolution/precipitation. Special attention is paid to the effect of varying, respectively, the concentration of $\text{SO}_4^{2-}$ ions and $\text{Mg}^{2+}$ ions in seawater like brines. The effect of changing the temperature is also demonstrated and evaluated in view of observed experimental behavior.

In particular, we explore in detail a 1D version of the model relevant for spontaneous imbibition experiments where wettability alteration has been linked to dissolution of calcite. Dynamic wettability alteration is built into the model by defining relative permeability and capillary pressure curves as an interpolation of two sets of end point curves corresponding to mixed-wet and water-wet conditions. This interpolation depends on the dissolution of calcite in such a way that when no dissolution has taken place, mixed-wet conditions prevail. However, gradually there is a shift towards more water-wet conditions at the places in the core where dissolution of calcite takes place. A striking feature reflected by the experimental data found in the literature is that the steady state level of oil recovery, for a fixed temperature, depends directly on the brine composition. We demonstrate that the proposed model naturally can explain this behavior by relating the wettability change to changes in the mineral composition due to dissolution/precipitation. Special attention is paid to the effect of varying, respectively, the concentration of $\text{SO}_4^{2-}$ ions and $\text{Mg}^{2+}$ ions in seawater like brines. The effect of changing the temperature is also demonstrated and evaluated in view of observed experimental behavior.

NHM

In this work a mathematical model is proposed for modeling of
coupled dissolution/precipitation and transport processes relevant
for the study of chalk weakening effects in carbonate reservoirs.
The model is composed of a number of convection-diffusion-reaction equations,
representing various ions in the water phase, coupled to some stiff ordinary differential equations (ODEs) representing species in the solid phase.
More precisely, the model includes the three minerals $\text{CaCO}_3$ (calcite), $\text{CaSO}_4$ (anhydrite), and $\text{MgCO}_3$ (magnesite) in the solid phase (i.e., the rock) together with a number of ions contained in the water phase and essential for describing the dissolution/precipitation processes. Modeling of kinetics is included for the dissolution/precipitation processes,
whereas thermodynamical equilibrium is assumed for the aqueous chemistry.
A numerical discretization of the full model is presented. An operator splitting approach is employed where the transport effects (convection and diffusion) and chemical reactions (dissolution/precipitation) are solved in separate steps.
This amounts to switching between solving a system of convection-diffusion equations and a system of ODEs.
Characteristic features of the model is then explored.
In particular, a first evaluation of the model is included where comparison with experimental behavior is made. For that purpose we consider a simplified system where a mixture of water and $\text{MgCl}_2$ (magnesium chloride) is injected with a constant rate in a core plug that initially is filled with pure water at a temperature of $T=130^{\circ}$ Celsius. The main characteristics of the resulting process, as predicted by the model, is precipitation of $\text{MgCO}_3$ and a corresponding dissolution of $\text{CaCO}_3$.
The injection rate and the molecular diffusion coefficients are chosen in good agreement with the experimental setup, whereas the reaction rate constants are treated as parameters.
In particular, by a suitable choice of reaction rate constants, the model produces results that agree well with experimental profiles for measured ion concentrations at the outlet.
Thus, the model seems to offer a sound basis for further systematic investigations of more complicated precipitation/dissolution processes relevant for increased insight into chalk weakening effects in carbonate reservoirs.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]