## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

In this paper we study a kinetic model for pedestrians, who are assumed to adapt their motion towards a desired direction while avoiding collisions with others by stepping aside. These minimal microscopic interaction rules lead to complex emergent macroscopic phenomena, such as velocity alignment in unidirectional flows and lane or stripe formation in bidirectional flows. We start by discussing collision avoidance mechanisms at the microscopic scale, then we study the corresponding Boltzmann-type kinetic description and its hydrodynamic mean-field approximation in the grazing collision limit. In the spatially homogeneous case we prove directional alignment under specific conditions on the sidestepping rules for both the collisional and the mean-field model. In the spatially inhomogeneous case we illustrate, by means of various numerical experiments, the rich dynamics that the proposed model is able to reproduce.

The purpose of this paper is to study the properties of kinetic models for traffic flow described by a Boltzmann-type approach and based on a continuous space of microscopic velocities. In our models, the particular structure of the collision kernel allows one to find the analytical expression of a class of steady-state distributions, which are characterized by being supported on a quantized space of microscopic speeds. The number of these velocities is determined by a physical parameter describing the typical acceleration of a vehicle and the uniqueness of this class of solutions is supported by numerical investigations. This shows that it is possible to have the full richness of a kinetic approach with the simplicity of a space of microscopic velocities characterized by a small number of modes. Moreover, the explicit expression of the asymptotic distribution paves the way to deriving new macroscopic equations using the closure provided by the kinetic model.

In this paper we formulate a theory of measure-valued linear transport equations on networks. The building block of our approach is the initial and boundary-value problem for the measure-valued linear transport equation on a bounded interval, which is the prototype of an arc of the network. For this problem we give an explicit representation formula of the solution, which also considers the total mass flowing out of the interval. Then we construct the global solution on the network by gluing all the measure-valued solutions on the arcs by means of appropriate distribution rules at the vertexes. The measure-valued approach makes our framework suitable to deal with multiscale flows on networks, with the microscopic and macroscopic phases represented by Lebesgue-singular and Lebesgue-absolutely continuous measures, respectively, in time and space.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]