Journals
- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
-
Electronic Research Announcements
-
Conference Publications
-
AIMS Mathematics
$\frac{\partial u}{\partial t}= \sum$nk,j,m=1$ a_{kjm}\frac{\partial^2u}{\partial x_k\partial x_j} (x_1,...,x_{m-1},x_m+h_{kjm},x_{m+1},...,x_n,t),$
assuming that the operator on the right-hand side of the equation is strongly elliptic and the coefficients $a_{kjm}$ and $h_{kjm}$ are real. We prove that this Cauchy problem has a unique solution (in the sense of distributions) and this solution is classical in ${\mathbb R}^n \times (0,+\infty),$ find its integral representation, and construct a differential parabolic equation with constant coefficients such that the difference between its classical bounded solution satisfying the same initial-value function and the investigated solution of the differential-difference equation tends to zero as $t\to\infty$.
Year of publication
Related Authors
Related Keywords
[Back to Top]