DCDS
The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds
Marco Ghimenti Anna Maria Micheletti Angela Pistoia
Discrete & Continuous Dynamical Systems - A 2014, 34(6): 2535-2560 doi: 10.3934/dcds.2014.34.2535
Given a 3-dimensional Riemannian manifold $(M,g)$, we investigate the existence of positive solutions of the Klein-Gordon-Maxwell system $$ \left\{ \begin{array}{cc} -\varepsilon^{2}\Delta_{g}u+au=u^{p-1}+\omega^{2}(qv-1)^{2}u & \text{in }M\\ -\Delta_{g}v+(1+q^{2}u^{2})v=qu^{2} & \text{in }M \end{array}\right. $$ and Schrödinger-Maxwell system $$ \left\{ \begin{array}{cc} -\varepsilon^{2}\Delta_{g}u+u+\omega uv=u^{p-1} & \text{in }M\\ -\Delta_{g}v+v=qu^{2} & \text{in }M \end{array}\right. $$ when $p\in(2,6). $ We prove that if $\varepsilon$ is small enough, any stable critical point $\xi_0$ of the scalar curvature of $g$ generates a positive solution $(u_\varepsilon,v_\varepsilon)$ to both the systems such that $u_\varepsilon$ concentrates at $\xi_0$ as $\varepsilon$ goes to zero.
keywords: scalar curvature Lyapunov-Schmidt reduction. Klein-Gordon-Maxwell systems Scrhödinger-Maxwell systems Riemannian manifolds
DCDS-S
The Morse property for functions of Kirchhoff-Routh path type
Thomas Bartsch Anna Maria Micheletti Angela Pistoia
Discrete & Continuous Dynamical Systems - S 2018, 0(0): 1867-1877 doi: 10.3934/dcdss.2019123
For a bounded domain
$ \Omega\subset\mathbb{R}^n $
let
$ H_\Omega:\Omega\times\Omega\to\mathbb{R} $
be the regular part of the Dirichlet Green function for the Laplace operator. Given a fixed arbitrary
$ {\mathcal C}^2 $
function
$ f:{\mathcal D}\to\mathbb{R} $
, defined on an open subset
$ {\mathcal D}\subset\mathbb{R}^{nN} $
, and fixed coefficients
$ \lambda_1,\dots,\lambda_N\in\mathbb{R}\setminus\{0\} $
we consider the function
$ f_\Omega:{\mathcal D}\cap\Omega^N\to\mathbb{R} $
defined as
$ f_\Omega(x_1,\dots,x_N) = f(x_1,\dots,x_N) - \sum\limits_{j,k = 1}^N \lambda_j\lambda_k H_\Omega(x_j,x_k). $
We prove that
$ f_\Omega $
is a Morse function for most domains
$ \Omega $
of class
$ {\mathcal C}^{m+2,\alpha} $
, any
$ m\ge0 $
,
$ 0<\alpha<1 $
. This applies in particular to the Robin function
$ h:\Omega\to\mathbb{R} $
,
$ h(x) = H_\Omega(x,x) $
, and to the Kirchhoff-Routh path function where
$ \Omega\subset\mathbb{R}^2 $
,
$ {\mathcal D} = \{x\in\mathbb{R}^{2N}: x_j\ne x_k \; \text{for }\; j\ne k \} $
, and
$ f(x_1,\dots,x_N) = - \frac{1}{2\pi}\sum\limits_{{j,k = 1}\atop{j\ne k}}^N\lambda_j\lambda_k\log|x_j-x_k|. $
keywords: Kirchhoff-Routh path function Morse function transversality theorem

Year of publication

Related Authors

Related Keywords

[Back to Top]