## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS-S

We investigate the growth of entire positive functions $u(x)$ and their gradients $Du$ in Sobolev spaces when a polynomial growth is assumed for their image $Lu$ through a linear second-order uniform elliptic operator $L$. In particular, under suitable assumptions on the coefficients, we show that if $Lu$ is bounded, then $u(x)$ may grow at most quadratically at infinity. We also discuss, by counterexamples, the optimality of the assumptions and extend the results to viscosity solutions of fully nonlinear equations.

DCDS

In this paper we discuss some extensions to a fully nonlinear setting of results by Y.Y. Li and L. Nirenberg [25] about gradient estimates for non-negative solutions of linear elliptic equations.
Our approach relies heavily on methods developed by L. Caffarelli in [3] and [4].

CPAA

In this paper we consider estimates of the Raleigh quotient and in general of the $H^{1,p}$-eigenvalue in quasicylindrical domains. Then we apply the results to obtain, by variational methods, existence and uniqueness of weak solutions of the Dirichlet problem for second-order elliptic equations in divergent form. For such solutions global boundedness estimates have been also established.

PROC

This paper contains new uniqueness results of the boundary blow-up viscosity solutions of second order elliptic equations, generalizing a well known result of Marcus-Veron for the Laplace operator.

keywords:
Elliptic equations
,
viscosity solutions
,
blow-up.
,
fully nonlinear equations
,
maximum principle

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]