## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

We study a perturbative scheme for normalization problems involving resonances of the unperturbed situation, and therefore the necessity of a non-trivial normal form, in the general framework of Banach scale Lie algebras (this notion is defined in the article). This situation covers the case of classical and quantum normal forms in a unified way which allows a direct comparison. In particular we prove a precise estimate for the difference between quantum and classical normal forms, proven to be of order of the square of the Planck constant. Our method uses mould calculus (recalled in the article) and properties of the solution of a universal mould equation studied in a preceding paper.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]