## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

In this paper, we propose a proximal alternating direction method (PADM) for solving the convex optimization problems with linear constraints whose objective function is the sum of multi-block separable functions and a coupled quadratic function. The algorithm generates the iterate via a simple correction step, where the descent direction is based on the PADM. We prove the convergence of the generated sequence under some mild assumptions. Finally, some familiar numerical results are reported for the new algorithm.

*Journal of Optimization Theory and Applications*

**132**, 227-243 (2007)) proposed an inexact operator splitting method for solving variational inequality problems. It has advantage over the classical operator splitting method of Douglas-Peaceman-Rachford-Varga operator splitting methods (DPRV methods) and some of their variants, since it adopts a very flexible approximate rule in solving the subproblem in each iteration. However, its convergence is established under somewhat stringent condition that the underlying mapping $F$ is strongly monotone. In this paper, we mainly establish the global convergence of the method under weaker condition that the underlying mapping $F$ is monotone, which extends the fields of applications of the method relatively. Some numerical results are also presented to illustrate the method.

In this paper, we propose to update the link tolls pattern in an improved manner, where the profit direction is the combination of two known directions. This combined manner makes the method more efficient than the method using solely one of them. We prove the global convergence of the method under suitable conditions as those in [6, 7, 24]. Some preliminary computational results are also reported.

The alternating direction method of multipliers (ADMM) is an efficient approach for two-block separable convex programming, while it is not necessarily convergent when extending this method to multiple-block case directly. One appealing method is that converts the multiple-block variables into two groups firstly and then adopts the classic ADMM with inexact solving to the resulting model, which is so-called block-wise ADMM. However, solving the subproblems in block-wise ADMM are usually difficult when the linear mappings in the constraints are not diagonal or the proximal operator of the objective function is not easy to evaluate. Therefore, in this paper, we adopt the linearization technique to different terms presented in the block-wise ADMM subproblems, and obtain three kinds of linearized block-wise ADMM which make the subproblems easy to solve in general case. Moreover, under some mild conditions, we prove the global convergence of the three new methods and report some preliminary numerical results to indicate the feasibility and effectiveness of the linearization strategy.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]