## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

We consider the problem of stabilization of unstable periodic solutions to autonomous systems by the non-invasive delayed feedback control known as Pyragas control method. The Odd Number Theorem imposes an important restriction upon the choice of the gain matrix by stating a necessary condition for stabilization. In this paper, the Odd Number Theorem is extended to equivariant systems. We assume that both the uncontrolled and controlled systems respect a group of symmetries. Two types of results are discussed. First, we consider rotationally symmetric systems for which the control stabilizes the whole orbit of relative periodic solutions that form an invariant two-dimensional torus in the phase space. Second, we consider a modification of the Pyragas control method that has been recently proposed for systems with a finite symmetry group. This control acts non-invasively on one selected periodic solution from the orbit and targets to stabilize this particular solution. Variants of the Odd Number Limitation Theorem are proposed for both above types of systems. The results are illustrated with examples that have been previously studied in the literature on Pyragas control including a system of two symmetrically coupled Stewart-Landau oscillators and a system of two coupled lasers.

For more information please click the “Full Text” above

Abstract. In this paper, the equivariant degree theory is used to analyze the occurrence of the Hopf bifurcation under effectively verifiable mild conditions. We combine the abstract result with standard interval polynomial techniques based on Kharitonov's theorem to show the existence of a branch of periodic solutions emanating from the equilibrium in the settings relevant to robust control. The results are illustrated with a number of examples.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]