## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

For the homogeneous Dirichlet problem involving a system of equations driven by $(p,q)$-Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.

The collected papers investigate a wide range of questions. Let us mention for instance multiple solutions to elliptic equations and systems in bounded or unbounded domains, sub-super-solutions of elliptic problems whose relevant energy functionals can be non-differentiable, singular elliptic equations, asymptotically critical problems on higher dimensional spheres, local $C^1$-minimizers versus local $W^{1,p}$-minimizers.

Each contribution is original and thoroughly reviewed.

Existence and regularity results for quasilinear elliptic equations driven by $(p, q)$-Laplacian and with gradient dependence are presented. A location principle for nodal (i.e., sign-changing) solutions is obtained by means of constant-sign solutions whose existence is also derived. Criteria for the existence of extremal solutions are finally established.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]