## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

In this paper we study a fully discrete Semi-Lagrangian approximation of a second order Mean Field Game system, which can be degenerate. We prove that the resulting scheme is well posed and, if the state dimension is equals to one, we prove a convergence result. Some numerical simulations are provided, evidencing the convergence of the approximation and also the difference between the numerical results for the degenerate and non-degenerate cases.

DCDS-S

We consider the Cauchy problem

$\left\{ \begin{array}{*{35}{l}} {{\partial }_{t}}u+H(x,Du) = 0&(x,t)\in \Gamma \times (0,T) \\ u(x,0) = {{u}_{0}}(x)&x\in \Gamma \\\end{array} \right.$ |

where

is a network and

is a positive homogeneous Hamiltonian which may change from edge to edge. In the first part of the paper, we prove that the Hopf-Lax type formula gives the (unique) viscosity solution of the problem. In the latter part of the paper we study a flame propagation model in a network and an optimal strategy to block a fire breaking up in some part of a pipeline; some numerical simulations are provided.

$\Gamma$ |

$H$ |

keywords:
Evolutive Hamilton-Jacobi equation
,
viscosity solution
,
network
,
Hopf-Lax formula
,
approximation

DCDS

In [14], Guéant, Lasry and Lions considered the model problem ``What time does meeting start?'' as a prototype for a general class of optimization problems with a continuum of players, called Mean Field Games problems. In this paper we consider a similar model, but with the dynamics of the agents defined on a network. We discuss appropriate transition conditions at the vertices which give a well posed problem and we present some numerical results.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]