## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

NHM

In this paper we propose a LWR-like model for traffic flow on networks which allows to track several groups of drivers, each of them being characterized only by their destination in the network.
The path actually followed to reach the destination is not assigned

The model is then used to describe three possible behaviors of drivers, associated to three different ways to solve the route choice problem: 1. Drivers ignore the presence of the other vehicles; 2. Drivers react to the current distribution of traffic, but they do not forecast what will happen at later times; 3. Drivers take into account the current and future distribution of vehicles. Notice that, in the latter case, we enter the field of differential games, and, if a solution exists, it likely represents a global equilibrium among drivers.

Numerical simulations highlight the differences between the three behaviors and offer insights into the existence of equilibria.

*a priori*, and can be chosen by the drivers during the journey, taking decisions at junctions.The model is then used to describe three possible behaviors of drivers, associated to three different ways to solve the route choice problem: 1. Drivers ignore the presence of the other vehicles; 2. Drivers react to the current distribution of traffic, but they do not forecast what will happen at later times; 3. Drivers take into account the current and future distribution of vehicles. Notice that, in the latter case, we enter the field of differential games, and, if a solution exists, it likely represents a global equilibrium among drivers.

Numerical simulations highlight the differences between the three behaviors and offer insights into the existence of equilibria.

NHM

In this paper we study a model for traffic flow on networks based on a hyperbolic system of conservation laws with discontinuous flux. Each equation describes the density evolution of vehicles having a common path along the network. In this formulation the junctions disappear since each path is considered as a single uninterrupted road.

We consider a Godunov-based approximation scheme for the system which is very easy to implement. Besides basic properties like the conservation of cars and positive bounded solutions, the scheme exhibits other nice properties, being able to select automatically a solution at network's nodes without requiring external procedures (e.g., maximization of the flux via a linear programming method). Moreover, the scheme can be interpreted as a discretization of the traffic models with buffer, although no buffer is introduced here.

Finally, we show how the scheme can be recast in the framework of the classical theory of traffic flow on networks, where a conservation law has to be solved on each arc of the network. This is achieved by solving the Riemann problem for a modified equation, and showing that its solution corresponds to the one computed by the numerical scheme.

We consider a Godunov-based approximation scheme for the system which is very easy to implement. Besides basic properties like the conservation of cars and positive bounded solutions, the scheme exhibits other nice properties, being able to select automatically a solution at network's nodes without requiring external procedures (e.g., maximization of the flux via a linear programming method). Moreover, the scheme can be interpreted as a discretization of the traffic models with buffer, although no buffer is introduced here.

Finally, we show how the scheme can be recast in the framework of the classical theory of traffic flow on networks, where a conservation law has to be solved on each arc of the network. This is achieved by solving the Riemann problem for a modified equation, and showing that its solution corresponds to the one computed by the numerical scheme.

NHM

Connections between microscopic follow-the-leader and macroscopic fluid-dynamics traffic flow models are already well understood in the case of vehicles moving on a single road. Analogous connections in the case of road networks are instead lacking. This is probably due to the fact that macroscopic traffic models on networks are in general ill-posed, since the conservation of the mass is not sufficient alone to characterize a unique solution at junctions. This ambiguity makes more difficult to find the right limit of the microscopic model, which, in turn, can be defined in different ways near the junctions.
In this paper we show that a natural extension of the first-order follow-the-leader model on networks corresponds, as the number of vehicles tends to infinity, to the LWR-based multi-path model introduced in [4,5].

keywords:
multi-path model
,
Traffic
,
follow-the-leader model.
,
networks
,
LWR model
,
car-following model
,
many-particle limit

DCDS-S

In this paper we propose a Godunov-based discretization of a hyperbolic system of conservation laws with discontinuous flux, modeling vehicular flow on a network. Each equation describes the density evolution of vehicles having a common path along the network.
We show that the algorithm selects automatically an admissible solution at junctions, hence

*ad hoc*external procedures (e.g., maximization of the flux via a linear programming method) usually employed in classical approaches are no needed. Since users have not to deal explicitly with vehicle dynamics at junction, the numerical code can be implemented in minutes. We perform a detailed numerical comparison with a Godunov-based scheme coming from the classical theory of traffic flow on networks which maximizes the flux at junctions.
keywords:
LWR model
,
traffic flow
,
multipopulation model
,
Godunov scheme
,
multipath model
,
networks.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]