## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

Mixed-moment minimum-entropy models (${\rm{M}}{{\rm{M}}_N}$ models) are known to overcome the zero net-flux problem of full-moment minimum entropy ${{\rm{M}}_N}$ models but lack regularity. We study differentiable mixed-moment models (full zeroth and first moment, half higher moments, called ${\rm{DM}}{{\rm{M}}_N}$ models) for a Fokker-Planck equation in one space dimension. Realizability theory for these modification of mixed moments is derived for second order. Numerical tests are performed with a kinetic first-order finite volume scheme and compared with ${{\rm{M}}_N}$, classical ${\rm{M}}{{\rm{M}}_N}$ and a ${{\rm{P}}_N}$ reference scheme.

Mixed-moment models, introduced in [_{1} model. We furthermore provide a realizability theory for a first-order system of mixed moments by linking it to the corresponding quarter-moment theory. Additionally, we derive a type of Kershaw closures for mixed-and quarter-moment models, giving an efficient closure (compared to minimum-entropy models). The derived closures are investigated for different benchmark problems.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]