DCDS
Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord
Fujun Zhou Shangbin Cui
In this paper we study a multidimensional moving boundary problem modeling the growth of tumor cord. This problem contains two coupled elliptic equations defined in a bounded domain in $R^2$ whose boundary consists of two disjoint closed curves, one fixed and the other moving and a priori unknown. The evolution of the moving boundary is governed by a Stefan type equation. By using the functional analysis method based on applications of the theory of analytic semigroups, we prove that (1) this problem is locally well-posed in Hölder spaces, (2) it has a unique radially symmetric stationary solution, and (3) this radially symmetric stationary solution is asymptotically stable for arbitrary sufficiently small perturbations in these Hölder spaces.
keywords: stability. tumor cord Moving boundary problem well-posedness
CPAA
Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors
Fujun Zhou Junde Wu Shangbin Cui
In this paper we study a moving boundary problem modeling the growth of multi-layer tumors under the action of inhibitors. The problem contains two coupled reaction-diffusion equations and one elliptic equation defined on a strip-like domain in $R^n$, with one part of the boundary moving and a priori unknown. The evolution of the moving boundary is governed by a Stefan type equation, with the surface tension effect taken into consideration. Local existence and asymptotic behavior of solutions to this problem are investigated. The analysis is based on the employment of the functional analysis method combing with the well-posedness and geometric theory for parabolic differential equations in Banach spaces.
keywords: Moving boundary problem multi-layer tumors asymptotic behavior.

Year of publication

Related Authors

Related Keywords

[Back to Top]