## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

We propose a kinetic model of BGK type for a gas mixture of an arbitrary number of species with arbitrary collision law. The model features the same structure of the corresponding Boltzmann equations and fulfils all consistency requirements concerning conservation laws, equilibria, and H-theorem. Comparison is made to existing BGK models for mixtures, and the achieved improvements are commented on. Finally, possible application to the case of Coulomb interaction is briefly discussed.

The aim of this paper is to compare different kinetic approaches to a polyatomic rarefied gas: the kinetic approach via a continuous energy parameter $I$ and the mixture-like one, based on discrete internal energy. We prove that if we consider only $6$ moments for a non-polytropic gas the two approaches give the same symmetric hyperbolic differential system previously obtained by the phenomenological Extended Thermodynamics. Both meaning and role of dynamical pressure become more clear in the present analysis.

A mathematical model, based on a mesoscopic approach, describing the competition between tumor cells and immune system in terms of kinetic integro-differential equations is presented. Four interacting components are considered, representing, respectively, tumors cells, cells of the host environment, cells of the immune system, and interleukins, which are capable to modify the tumor-immune system interaction and to contribute to destroy tumor cells. The internal state variable (activity) measures the capability of a cell of prevailing in a binary interaction. Under suitable assumptions, a closed set of autonomous ordinary differential equations is then derived by a moment procedure and two three-dimensional reduced systems are obtained in some partial quasi-steady state approximations. Their qualitative analysis is finally performed, with particular attention to equilibria and their stability, bifurcations, and their meaning. Results are obtained on asymptotically autonomous dynamical systems, and also on the occurrence of a particular backward bifurcation.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]