Journals
- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
-
Electronic Research Announcements
-
Conference Publications
-
AIMS Mathematics
NHM
The notion of Wardrop equilibrium in congested networks has been very popular in congested traffic modelling since its introduction in the early 50's, it is also well-known that Wardrop equilibria may be obtained by some convex minimization problem. In this paper, in the framework of $\Gamma$-convergence theory, we analyze what happens when a cartesian network becomes very dense. The continuous model we obtain this way is very similar to the continuous model of optimal transport with congestion of Carlier, Jimenez and Santambrogio [6] except that it keeps track of the anisotropy of the network.
NHM
Starting from a continuous congested traffic framework recently introduced in [8], we present a consistent numerical scheme to compute equilibrium metrics. We show that equilibrium metric is the solution of a variational problem involving geodesic distances. Our discretization scheme is based on the Fast Marching Method. Convergence is proved via a $\Gamma$-convergence result and numerical results are given.
KRM
We obtain new a priori estimates for spatially inhomogeneous solutions of a kinetic equation for granular media, as first proposed in [3] and, more recently, studied in [1]. In particular, we show that a family of convex functionals on the phase space is non-increasing along the flow of such equations, and we deduce consequences on the asymptotic behaviour of solutions. Furthermore, using an additional assumption on the interaction kernel and a ``potential for interaction'', we prove a global entropy estimate in the one-dimensional case.
Year of publication
Related Authors
Related Keywords
[Back to Top]