## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

JIMO

By using the Least Squares Support Vector Machines (LS-SVMs), we develop a numerical approach to find an approximate solution for affine nonlinear systems with partially unknown functions. This approach can obtain continuous and differential approximate solutions of the nonlinear differential equations, and can also identify the unknown nonlinear part through a set of measured data points. Technically, we first map the known part of the affine nonlinear systems into high dimensional feature spaces and derive the form of approximate solution. Then the original problem is formulated as an approximation problem via kernel trick with LS-SVMs. Furthermore, the approximation of the known part can be expressed via some linear equations with coefficient matrices as coupling square matrices, and the unknown part can be identified by its relationship to the known part and the approximate solution of affine nonlinear systems. Finally, several examples for different systems are presented to illustrate the validity of the proposed approach.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]