## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

DCDS-B

SELEX (Systematic Evolution of Ligands by EXponential Enrichment) is an iterative
separation process by which a pool of nucleic acids that bind with varying specificities to a fixed target molecule or a fixed mixture of target molecules, i.e., single or multiple targets, can be separated into one or more pools of pure nucleic acids. In its simplest form, as introduced in [6], the initial pool is combined with the target and the products separated from the mixture of bound and unbound nucleic acids. The nucleic acids bound to the products are then separated from the target. The resulting pool
of nucleic acids is expanded using PCR (polymerase chain reaction) to bring the pool size back up to the concentration of the initial pool and the process is then repeated. At each stage the pool is richer in nucleic acids that bind best to the target. In the case
that the target has multiple components, one obtains a mixture of nucleic acids that bind best to at least one of the
components. A further refinement of multiple target SELEX, known as alternate SELEX, is described below. This process permits one to specify which nucleic acids bind best to each component of the target.

These processes give rise to discrete dynamical systems based on consideration of statistical averages (the law of mass action) at each step. A number of interesting questions arise in the mathematical analysis of these dynamical systems. In particular, one of the most important questions one can ask about the limiting pool of nucleic acids is the following: Under what conditions on the individual affinities of each nucleic acid for each target component does the dynamical system have a global attractor consisting of a single point? That is, when is the concentration distribution of the limiting pool of nucleic acids independent of the concentrations of the individual nucleic acids in the initial pool, assuming that all nucleic acids are initially present in the initial pool? The paper constitutes a summary of our theoretical and numerical work on these questions, carried out in some detail in [9], [11], [13].

These processes give rise to discrete dynamical systems based on consideration of statistical averages (the law of mass action) at each step. A number of interesting questions arise in the mathematical analysis of these dynamical systems. In particular, one of the most important questions one can ask about the limiting pool of nucleic acids is the following: Under what conditions on the individual affinities of each nucleic acid for each target component does the dynamical system have a global attractor consisting of a single point? That is, when is the concentration distribution of the limiting pool of nucleic acids independent of the concentrations of the individual nucleic acids in the initial pool, assuming that all nucleic acids are initially present in the initial pool? The paper constitutes a summary of our theoretical and numerical work on these questions, carried out in some detail in [9], [11], [13].

keywords:
nucleic acids
,
SELEX.
,
global attractors
,
polymerase chain reaction
,
Discrete dynamical systems

PROC

A recently proposed mathematical model for turor angiogenesis consists of a coupled system of ordinary and partial differential equations, some of which are strongly convection dominated diffusion equations. A numerical method based on the use of characterics, which is mass conserving, can be used to effectively handle this feature. The model and the numerical method are presented.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]