## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

JIMO

This paper is concerned with solving a stochastic variational inequality problem (for short, SVIP) from a viewpoint of minimization of mixed conditional value-at-risk (CVaR). The regularized gap function for SVIP is used to define a loss function for the SVIP and mixed CVaR to measure the loss. In this setting, SVIP can be reformulated as a deterministic minimization problem. We show that the reformulation is a convex program for a huge class of SVIP under suitable conditions. Since mixed CVaR involves the plus function and mathematical expectation, the neural network smoothing function and Monte Carlo method are employed to get an approximation problem of the minimization reformulation. Finally, we consider the convergence of optimal solutions and stationary points of the approximation.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]