## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

We propose a mathematical model to describe tumor cells movement towards a metastasis location into the bone marrow considering the influence of chemotaxis inhibition due to the action of a drug. The model considers the evolution of the signaling molecules CXCL-12 secreted by osteoblasts (bone cells responsible of the mineralization of the bone) and PTHrP (secreted by tumor cells) which activates osteoblast growth. The model consists of a coupled system of second order PDEs describing the evolution of CXCL-12 and PTHrP, an ODE of logistic type to model the Osteoblasts density and an extra equation for each cancer cell. We also simulate the system to illustrate the qualitative behavior of the solutions. The numerical method of resolution is also presented in detail.

$u$ |

$v$ |

$ \mathbb{R}^n$ |

$v$ |

$v_t = h(u, v).$ |

$ h_v+χ u h_u>0 $ |

$g$ |

$h_v+χ u h_u = 0$ |

$g \equiv 0$ |

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]