## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

IPI

Using a vanishing theorem for microlocally real analytic distributions and a theorem on flatness of a distribution vanishing on infinitely many hyperplanes we give a new proof of an injectivity theorem of Bélisle, Massé, and Ransford for the ray transform on $\R^n$. By means of an example we show that this result is sharp. An extension is given where real analyticity is replaced by quasianalyticity.

IPI

We consider a weighted Radon transform in the plane,
$R_m(\xi, \eta) = \int_{\R} f(x, \xi x + \eta) m(x,\xi,\eta) dx$,
where $m(x,\xi,\eta)$ is a smooth, positive function. Using an extension of an argument of Strichartz we prove a local injectivity theorem for $R_m$ for essentially the same class of $m(x,\xi,\eta)$ that was considered by Gindikin in his article in this issue.

IPI

We study the X-ray transform $I$ of symmetric tensor fields on a smooth convex bounded domain $Ω\subset{\mathbb R}^n$. The main result is the stability estimate $\|^{s}f\|_{L^2}≤ C\|If\|_{H^{1/2}}$, where $^{s}f$ is the solenoidal part of the tensor field $f$. The proof is based on a comparison of the Dirichlet integrals for the exterior and interior Dirichlet problems and on a generalization of the Korn inequality to symmetric tensor fields of arbitrary rank.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]