## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

We develop the techniques of [25] and [11] in order to derive dispersive estimates for a matrix Hamiltonian equation defined by linearizing about a minimal mass soliton solution of a saturated, focussing nonlinear Schrödinger equation

$\i u_t + \Delta u + \beta (|u|^2) u = 0$

$\u(0,x) = u_0 (x),$

DCDS

Schrödinger / Gross-Pitaevskii equations (NLS/GP) with a focusing (attractive) nonlinear potential and symmetric double well linear potential. NLS/GP plays a central role in the modeling of nonlinear optical and mean-field quantum many-body phenomena. It is known that there is a critical $L^2$ norm (optical power / particle number) at which there is a symmetry breaking bifurcation of the ground state.
We study the rich dynamical behavior near the symmetry breaking point.
The source of this behavior in the full Hamiltonian PDE is related to the dynamics of a finite-dimensional Hamiltonian reduction.
We derive this reduction, analyze a part of its phase space and prove a

*shadowing theorem*on the persistence of solutions, with oscillating mass-transport between wells, on very long, but finite, time scales within the full NLS/GP. The infinite time dynamics for NLS/GP are expected to depart, from the finite dimensional reduction, due to resonant coupling of discrete and continuum / radiation modes.
DCDS

We study the long-time behavior of solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation (NLS/GP) with a symmetric double-well potential. NLS/GP governs nearly-monochromatic guided optical beams in weakly coupled waveguides with both linear and nonlinear (Kerr) refractive indices and zero absorption, as well as the behavior of Bose-Einstein condensates. For small $L^2$ norm (low power), the solution executes beating oscillations between the two wells. There is a power threshold at which a symmetry breaking bifurcation occurs. The set of guided mode solutions splits into two families of solutions. One type of solution is concentrated in either well of the potential, but not both. Solutions in the second family undergo tunneling oscillations between the two wells. A finite dimensional reduction (system of ODEs) derived in [17] is expected to well-approximate the PDE dynamics on long time scales. In particular, we revisit this reduction, find a class of exact solutions and shadow them in the (NLS/GP) system by applying the approach of [17].

keywords:
shadowing.
,
tunneling
,
Hamiltonian systems
,
Nonlinear Schrödinger equation
,
effective dynamics

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]