## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

In this paper, we study the generalized mean-field stochastic control problem when the usual stochastic maximum principle (SMP) is not applicable due to the singularity of the Hamiltonian function. In this case, we derive a second order SMP. We introduce the adjoint process by the generalized mean-field backward stochastic differential equation. The keys in the proofs are the expansion of the cost functional in terms of a perturbation parameter, and the use of the range theorem for vector-valued measures.

This paper studies a robust optimal investment and reinsurance problem under model uncertainty. The insurer's risk process is modeled by a general jump process generated by a marked point process. By transferring a proportion of insurance risk to a reinsurance company and investing the surplus into the financial market with a bond and a share index, the insurance company aims to maximize the minimal expected terminal wealth with a penalty. By using the dynamic programming, we formulate the robust optimal investment and reinsurance problem into a two-person, zero-sum, stochastic differential game between the investor and the market. Closed-form solutions for the case of the quadratic penalty function are derived in our paper.

In this article, we study a class of partially observed non-zero sum stochastic differential game based on forward and backward stochastic differential equations (FBSDEs). It is required that each player has his own observation equation, and the corresponding Nash equilibrium control is required to be adapted to the filtration generated by the observation process. To find the Nash equilibrium point, we establish the maximum principle as a necessary condition and derive the verification theorem as a sufficient condition. Applying the theoretical results and stochastic filtering theory, we obtain the explicit investment strategy of a partial information financial problem.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]