## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

IPI

In this paper, a theoretical framework for the conditional diffusion of digital
images is presented. Different approaches have been proposed to solve this
problem by extrapolating the idea of the anisotropic diffusion for a grey level
images to vector-valued images. Then, the diffusion of each channel is
conditioned to a direction which normally takes into account information from
all channels. In our approach, the diffusion model assumes the a

The consistency of the model is shown by proving the existence and uniqueness of solution for the proposed equation from the viscosity solutions theory. Also a numerical scheme adapted to this equation based on the neighborhood filter is proposed. Finally, we discuss several applications and we compare the corresponding numerical schemes for the proposed model.

*priori*knowledge of the diffusion direction during all the process.The consistency of the model is shown by proving the existence and uniqueness of solution for the proposed equation from the viscosity solutions theory. Also a numerical scheme adapted to this equation based on the neighborhood filter is proposed. Finally, we discuss several applications and we compare the corresponding numerical schemes for the proposed model.

IPI

We present a method for the automatic estimation of the minimum set of
colors needed to describe an image. We call this minimal set
''color palette''.
The proposed method combines the well-known K-Means clustering technique with
a thorough analysis of the color information of the image.
The initial set of cluster seeds used in K-Means is automatically inferred from
this analysis.
Color information is analyzed by studying the 1D histograms
associated to the hue, saturation and intensity components
of the image colors. In order to achieve a proper parsing of these
1D histograms a new histogram segmentation technique is proposed.
The experimental
results seem to endorse the capacity of the method to obtain the most significant
colors in the image, even if they belong to small details in the scene.
The obtained palette can be combined with a dictionary of color names in order
to provide a qualitative image description.

IPI

Patches are small images (typically $8\times 8$ to $12\times 12$) extracted from natural images. The ``patch space'' is the set of all observable patches extracted from digital images in the world. This observable space is huge and should permit a sophisticated statistical analysis. In the past ten years, statistical inquiries and applications involving the ``patch space'' have tried to explore its structure on several levels. The first attempts have invalidated models based on PCA or Fourier analysis. Redundant bases (or patch dictionaries) obtained by independent component analysis (ICA) or related processes have tried to find a reduced set of patches on which every other patch obtains a sparse decomposition. Optimization algorithms such as EM have been used to explore the patch space as a Gaussian mixture. The goal of the present paper is to review this literature, and to extend its methodology to gain more insight on the independent components of the patch space.

The conclusion of our analysis is that the sophisticated ICA tools introduced to analyze the patch space require a previous geometric normalization step to yield non trivial results. Indeed, we demonstrate by a simple experimental setup and by the analysis of the literature that, without this normalization, the patch space structure is actually hidden by the rotations, translations, and contrast changes. Thus, ICA models applied on a random set of patches boil down to segmenting the patch space depending on insignificant dimensions such as the patch orientation or the position of its gradient barycenter. When, instead of exploring the raw patches, one decides to explore the quotient of the set of patches by these action groups, a geometrically interpretable patch structure is revealed.

The conclusion of our analysis is that the sophisticated ICA tools introduced to analyze the patch space require a previous geometric normalization step to yield non trivial results. Indeed, we demonstrate by a simple experimental setup and by the analysis of the literature that, without this normalization, the patch space structure is actually hidden by the rotations, translations, and contrast changes. Thus, ICA models applied on a random set of patches boil down to segmenting the patch space depending on insignificant dimensions such as the patch orientation or the position of its gradient barycenter. When, instead of exploring the raw patches, one decides to explore the quotient of the set of patches by these action groups, a geometrically interpretable patch structure is revealed.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]