## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

$ T_h^0\Phi(p)=\sum_{k=1}^{\infty}R(h)^kQF(p^{-k}+\Phi(p^{-k})) $

where $p^{-k}=(S^h_\Phi)^{-k}(p)$, see [1] for detailed definition. Here we get the existence by solving the following equation about $\Phi$:

$\Phi(S_\Phi^h(p))=R(h)[\Phi(p)+hQF(p+\Phi(p))] \mbox{ for }\forall p\in PH.$

See section 1 for further explanation which describes just the invariant property of inertial manifolds. Finally we prove the $C^1$ smoothness of inertial manifolds.

A dimension splitting and characteristic projection method is proposed for three-dimensional incompressible flow. First, the characteristics method is adopted to obtain temporal semi-discretization scheme. For the remaining Stokes equations we present a projection method to deal with the incompressibility constraint. In conclusion only independent linear elliptic equations need to be calculated at each step. Furthermore on account of splitting property of dimension splitting method, all the computations are carried out on two-dimensional manifolds, which greatly reduces the difficulty and the computational cost in the mesh generation. And a coarse-grained parallel algorithm can be also constructed, in which the two-dimensional manifold is considered as the computation unit.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]