## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

A time-delayed reaction-diffusion epidemic model with stage structure and spatial heterogeneity is investigated, which describes the dynamics of disease spread only proceeding in the adult population. We establish the basic reproduction number $\mathcal{R}_0$ for the model system, which gives the threshold dynamics in the sense that the disease will die out if $\mathcal{R}_0＜1$ and the disease will be uniformly persistent if $\mathcal{R}_0>1.$ Furthermore, it is shown that there is at least one positive steady state when $\mathcal{R}_0>1.$ Finally, in terms of general birth function for adult individuals, through introducing two numbers $\check{\mathcal{R}}_0$ and $\hat{\mathcal{R}}_0$, we establish sufficient conditions for the persistence and global extinction of the disease, respectively.

$\left\{ {\begin{array}{*{20}{l}}{ - {{\cal L}_K}u = \lambda u + f(x,u) + g(x,u),\;\;x \in \Omega ,}\\{u = 0,\;\;x \in \mathbb{R}{^N} \setminus \Omega ,}\end{array}} \right. $ |

In this paper, a time periodic and two–group reaction–diffusion epidemic model with distributed delay is proposed and investigated. We firstly introduce the basic reproduction number $R_0$ for the model via the next generation operator method. We then establish the threshold dynamics of the model in terms of $R_0$, that is, the disease is uniformly persistent if $R_0 > 1$, while the disease goes to extinction if $R_0 < 1$. Finally, we study the global dynamics for the model in a special case when all the coefficients are independent of spatio–temporal variables.

In this paper, we study the effects of diffusion and advection for an SIS epidemic reaction-diffusion-advection model in a spatially and temporally heterogeneous environment. We introduce the basic reproduction number $\mathcal{R}_{0}$ and establish the threshold-type results on the global dynamics in terms of $\mathcal{R}_{0}$. Some general qualitative properties of $\mathcal{R}_{0}$ are presented, then the paper is devoted to studying how the advection and diffusion of the infected individuals affect the reproduction number $\mathcal{R}_{0}$ for the special case that $γ(x,t)-β(x,t) = V(x,t)$ is monotone with respect to spatial variable $x$. Our results suggest that if $V_{x}(x,t)≥0,\not\equiv0$ and $V(x, t)$ changes sign about $x$, the advection is beneficial to eliminate the disease, whereas if $V_{x}(x,t)≤0,\not\equiv0$ and $V(x, t)$ changes sign about $x$, the advection is bad for the elimination of disease.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]