Remarks on quasilinear elliptic equations as models for elementary particles
Filippo Gazzola Lorenzo Pisani
We study a class of quasilinear elliptic equations suggested by C.H. Derrick in 1964 as models for elementary particles. For scalar fields we prove some new nonexistence results. For vector-valued fields the situation is different as shown by recent results concerning the existence of solitary waves with a topological constraint.
keywords: topological charge. radial symmetry p-Laplacian solitary waves
Klein-Gordon-Maxwell systems in a bounded domain
Pietro d’Avenia Lorenzo Pisani Gaetano Siciliano
This paper is concerned with the Klein-Gordon-Maxwell system in a bounded space domain. We discuss the existence of standing waves $\psi=u(x)e^{-i\omega t}$ in equilibrium with a purely electrostatic field $\mathbf{E}=-\nabla\phi(x)$. We assume homogeneous Dirichlet boundary conditions on $u$ and non homogeneous Neumann boundary conditions on $\phi$. In the "linear" case we prove the existence of a nontrivial solution when the coupling constant is sufficiently small. Moreover we show that a suitable nonlinear perturbation in the matter equation gives rise to infinitely many solutions. These problems have a variational structure so that we can apply global variational methods.
keywords: standing waves electrostatic field. Klein-Gordon-Maxwell system

Year of publication

Related Authors

Related Keywords

[Back to Top]