An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix
Gianluca D'Antonio Paul Macklin Luigi Preziosi
The basement membrane (BM) and extracellular matrix (ECM) play critical roles in developmental and cancer biology, and are of great interest in biomathematics. We introduce a model of mechanical cell-BM-ECM interactions that extends current (visco)elastic models (e.g. [8,16]), and connects to recent agent-based cell models (e.g. [2,3,20,26]). We model the BM as a linked series of Hookean springs, each with time-varying length, thickness, and spring constant. Each BM spring node exchanges adhesive and repulsive forces with the cell agents using potential functions. We model elastic BM-ECM interactions with analogous ECM springs. We introduce a new model of plastic BM and ECM reorganization in response to prolonged strains, and new constitutive relations that incorporate molecular-scale effects of plasticity into the spring constants. We find that varying the balance of BM and ECM elasticity alters the node spacing along cell boundaries, yielding a nonuniform BM thickness. Uneven node spacing generates stresses that are relieved by plasticity over long times. We find that elasto-viscoplastic cell shape response is critical to relieving uneven stresses in the BM. Our modeling advances and results highlight the importance of rigorously modeling of cell-BM-ECM interactions in clinically important conditions with significant membrane deformations and time-varying membrane properties, such as aneurysms and progression from in situ to invasive carcinoma.
keywords: biomechanics extracellular matrix basement membrane elasto-plasticity. Agent-based model
A Cellular Potts model simulating cell migration on and in matrix environments
Marco Scianna Luigi Preziosi Katarina Wolf
Cell migration on and through extracellular matrix is fundamental in a wide variety of physiological and pathological phenomena, and is exploited in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, pore size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migration efficiencies and phenotypes both on two-dimensional substrates and within three-dimensional matrices, close to experimental evidence. As distinct features of our approach, cells are modeled as compartmentalized discrete objects, differentiated into nucleus and cytosolic region, while the extracellular matrix is composed of a fibrous mesh and a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological extracellular matrix distribution and a biphasic dependence of migration on the matrix structure, density, adhesion, and stiffness, and, moreover, simulates that cell locomotion in highly constrained fibrillar obstacles requires the deformation of the cell's nucleus and/or the activity of cell-derived proteolysis. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomenon in healthy and diseased tissues and in engineering applications.
keywords: Cellular Potts model extracellular matrix cell migration.

Year of publication

Related Authors

Related Keywords

[Back to Top]