## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

EECT

In this paper we study a generalized Cahn-Hilliard equation which was proposed by Gurtin [9]. We prove the existence and uniqueness of a local-in-time solution for a quasilinear version, that is, if the coefficients depend on the solution and its gradient. Moreover we show that local solutions to the corresponding semilinear problem exist globally as long as the physical potential satisfies certain growth conditions. Finally we study the long-time behaviour of the solutions and show that each solution converges to a equilibrium as time tends to infinity.

EECT

We investigate a quasilinear initial-boundary value problem for Kuznetsov's equation with non-homogeneous Dirichlet boundary conditions. This is a model in nonlinear acoustics which describes the propagation of sound in fluidic media with applications in medical ultrasound. We prove that there exists a unique global solution which depends continuously on the sufficiently small data and that the solution and its temporal derivatives converge at an exponential rate as time tends to infinity. Compared to the analysis of Kaltenbacher & Lasiecka, we require optimal regularity conditions on the data and give simplified proofs which are based on maximal $L_p$-regularity for parabolic equations and the implicit function theorem.

DCDS

We consider a quasilinear PDE system which models nonlinear vibrations
of a thermoelastic plate defined on a bounded domain in $\mathbb{R}^n$. Global Well-posedness of solutions is shown by applying the theory of maximal parabolic regularity of type $L_p$. In addition, we prove exponential decay rates for strong solutions and their derivatives.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]