Periodic solutions of the Brillouin electron beam focusing equation
Maurizio Garrione Manuel Zamora
Communications on Pure & Applied Analysis 2014, 13(2): 961-975 doi: 10.3934/cpaa.2014.13.961
Quite unexpectedly with respect to the numerical and analytical results found in literature, we establish a new range for the real parameter $b$ for which the existence of $2\pi-$periodic solutions of the Brillouin focusing beam equation \begin{eqnarray} \ddot{x}+b(1+\cos t)x=\frac{1}{x} \end{eqnarray} is guaranteed. This is possible thanks to suitable nonresonance conditions acting on the rotation number of the solutions in the phase plane.
keywords: Brillouin focusing system Poincaré-Bohl theorem singular nonlinearities periodic solutions
Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations
Maurizio Garrione Marta Strani
Discrete & Continuous Dynamical Systems - S 2019, 12(1): 91-103 doi: 10.3934/dcdss.2019006
We study the existence of monotone heteroclinic traveling waves for the
-dimensional reaction-diffusion equation
$u_t = (\vert u_x \vert^{p-2} u_x + \vert u_x \vert^{q-2} u_x)_x + f(u), \;\;\;\; t ∈ \mathbb{R}, \; x ∈ \mathbb{R}, $
where the non-homogeneous operator appearing on the right-hand side is of
$(p, q)$
-Laplacian type. Here we assume that
$2 ≤ q < p$
is a nonlinearity of Fisher type on
$[0, 1]$
, namely
$f(0) = 0 = f(1)$
$f > 0$
$]0, 1[\, $
. We give an estimate of the critical speed and we comment on the roles of
in the dynamics, providing some numerical simulations.
keywords: Reaction-diffusion equations $(p, q)$-Laplacian wave fronts admissible speeds

Year of publication

Related Authors

Related Keywords

[Back to Top]