## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

Globally exponential $κ-$dissipativity, a new concept of dissipativity for semigroups, is introduced. It provides a more general criterion for the exponential attraction of some evolutionary systems. Assuming that a semigroup $\{S(t)\}_{t≥q 0}$ has a bounded absorbing set, then $\{S(t)\}_{t≥q 0}$ is globally exponentially $κ-$dissipative if and only if there exists a compact set $\mathcal{A}^*$ that is positive invariant and attracts any bounded subset exponentially. The set $\mathcal{A}^*$ need not be finite dimensional. This result is illustrated with an application to a damped semilinear wave equation on a bounded domain.

In this paper, we study the dynamic behavior of a stochastic reaction-diffusion equation with dynamical boundary condition, where the nonlinear terms $f$ and $h$ satisfy the polynomial growth condition of arbitrary order. Some higher-order integrability of the difference of the solutions near the initial time, and the continuous dependence result with respect to initial data in $H^1(\mathcal{O})× H^{\frac 1 2}(Γ)$ were established. As a direct application, we can obtain the existence of pullback random attractor $A$ in the spaces $L^{p}(\mathcal{O})× L^{p}(Γ)$ and $H^1(\mathcal{O})× H^{\frac 1 2}(Γ)$ immediately.

The well-posedness and asymptotic dynamics of second-order-in-time stochastic evolution equations with state-dependent delay is investigated. This class covers several important stochastic PDE models arising in the theory of nonlinear plates with additive noise. We first prove well-posedness in a certain space of functions which are $C^1$ in time. The solutions constructed generate a random dynamical system in a $C^1$-type space over the delay time interval. Our main result shows that this random dynamical system possesses compact global and exponential attractors of finite fractal dimension. To obtain this result we adapt the recently developed method of quasi-stability estimates to the random setting.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]