DCDS-B
Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients
Shihe Xu Yinhui Chen Meng Bai
In this paper we study a free boundary problem for the growth of avascular tumors. The establishment of the model is based on the diffusion of nutrient and mass conservation for the two process proliferation and apoptosis(cell death due to aging). It is assumed the supply of external nutrients is periodic. We mainly study the long time behavior of the solution, and prove that in the case $c$ is sufficiently small, the volume of the tumor cannot expand unlimitedly. It will either disappear or evolve to a positive periodic state.
keywords: global solution periodic solution free boundary problem asymptotic behavior. Tumors
DCDS-B
Mathematical analysis of population migration and its effects to spread of epidemics
Shangbin Cui Meng Bai
In this paper we study some mathematical models describing evolution of population density and spread of epidemics in population systems in which spatial movement of individuals depends only on the departure and arrival locations and does not have apparent connection with the population density. We call such models as population migration models and migration epidemics models, respectively. We first apply the theories of positive operators and positive semigroups to make systematic investigation to asymptotic behavior of solutions of the population migration models as time goes to infinity, and next use such results to study asymptotic behavior of solutions of the migration epidemics models as time goes to infinity. Some interesting properties of solutions of these models are obtained.
keywords: mathematical model epidemics Population migration asymptotic behavior.
DCDS-B
Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays
Shihe Xu Meng Bai Fangwei Zhang

In this paper we study a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. It is assumed that the process of proliferation is delayed compared with apoptosis. The delay represents the time taken for cells to undergo mitosis. By employing stability theory for functional differential equations, comparison principle and some meticulous mathematical analysis, we mainly study the asymptotic behavior of the solution, and prove that in the case $c$ (the ratio of the diffusion time scale to the tumor doubling time scale) is sufficiently small, the volume of the tumor cannot expand unlimitedly. It will either disappear or evolve to one of two dormant states as $t\to ∞$. The results show that dynamical behavior of solutions of the model are similar to that of solutions for corresponding nonretarded problems under some conditions.

keywords: Tumor growth free boundary problem global existence and uniqueness asymptotic behavior stability

Year of publication

Related Authors

Related Keywords

[Back to Top]