## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

This paper deals with the problem of finding the range of entropy values resulting from actions of discrete amenable groups by automorphisms of compact abelian groups. When the acting group $G$ is locally normal, we obtain an entropy formula and show that the full range of entropy values $[0,\infty]$ occurs for actions of $G$. We consider related entropy range problems, give sufficient conditions for zero entropy and, as a consequence, verify the known relationship between completely positive entropy and mixing for these actions.

ERA-MS

We investigate in this paper the distribution of the discrepancy of various lattice counting functions. In particular, we prove that the number of lattice points contained in certain domains defined by products of linear forms satisfies a Central Limit Theorem. Furthermore, we show that the Central Limit Theorem holds for the number of rational approximants for weighted Diophantine approximation in $\mathbb{R}^d$. Our arguments exploit chaotic properties of the Cartan flow on the space of lattices.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]